Suppr超能文献

通过同源重组进行精确的基因组编辑。

Precise genome editing by homologous recombination.

作者信息

Hoshijima K, Jurynec M J, Grunwald D J

机构信息

University of Utah, Salt Lake City, UT, United States.

出版信息

Methods Cell Biol. 2016;135:121-47. doi: 10.1016/bs.mcb.2016.04.008. Epub 2016 May 2.

Abstract

Simple and efficient methods are presented for creating precise modifications of the zebrafish genome. Edited alleles are generated by homologous recombination between the host genome and double-stranded DNA (dsDNA) donor molecules, stimulated by the induction of double-strand breaks at targeted loci in the host genome. Because several kilobase-long tracts of sequence can be exchanged, multiple genome modifications can be generated simultaneously at a single locus. Methods are described for creating: (1) alleles with simple sequence changes or in-frame additions, (2) knockin/knockout alleles that express a reporter protein from an endogenous locus, and (3) conditional alleles in which exons are flanked by recombinogenic loxP sites. Significantly, our approach to genome editing allows the incorporation of a linked reporter gene into the donor sequences so that successfully edited alleles can be identified by virtue of expression of the reporter. Factors affecting the efficiency of genome editing are discussed, including the finding that dsDNA products of I-SceI meganuclease enzyme digestion are particularly effective as donor molecules for gene-editing events. Reagents and procedures are described for accomplishing efficient genome editing in the zebrafish.

摘要

本文介绍了用于对斑马鱼基因组进行精确修饰的简单高效方法。编辑后的等位基因通过宿主基因组与双链DNA(dsDNA)供体分子之间的同源重组产生,宿主基因组中靶向位点的双链断裂诱导可刺激这种重组。由于可以交换几千碱基长的序列片段,因此可以在单个位点同时产生多个基因组修饰。文中描述了以下几种创建方法:(1)具有简单序列变化或框内添加的等位基因;(2)从内源位点表达报告蛋白的敲入/敲除等位基因;(3)外显子两侧带有重组酶loxP位点的条件等位基因。重要的是,我们的基因组编辑方法允许将一个连锁的报告基因整合到供体序列中,这样就可以通过报告基因的表达来鉴定成功编辑的等位基因。文中讨论了影响基因组编辑效率的因素,包括发现I-SceI 巨核酸酶消化产生的dsDNA产物作为基因编辑事件的供体分子特别有效。文中还描述了在斑马鱼中实现高效基因组编辑的试剂和操作步骤。

相似文献

1
Precise genome editing by homologous recombination.
Methods Cell Biol. 2016;135:121-47. doi: 10.1016/bs.mcb.2016.04.008. Epub 2016 May 2.
2
Precise Editing of the Zebrafish Genome Made Simple and Efficient.
Dev Cell. 2016 Mar 21;36(6):654-67. doi: 10.1016/j.devcel.2016.02.015.
3
TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
Methods Cell Biol. 2016;135:107-20. doi: 10.1016/bs.mcb.2016.03.005. Epub 2016 Apr 7.
4
Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases.
Development. 2014 Oct;141(19):3807-18. doi: 10.1242/dev.108019. Epub 2014 Sep 5.
5
Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
Genesis. 2020 Jan;58(1):e23340. doi: 10.1002/dvg.23340. Epub 2019 Sep 30.
6
In vivo genome editing using a high-efficiency TALEN system.
Nature. 2012 Nov 1;491(7422):114-8. doi: 10.1038/nature11537. Epub 2012 Sep 23.
7
I-SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei.
Appl Microbiol Biotechnol. 2015 Dec;99(23):10083-95. doi: 10.1007/s00253-015-6829-1. Epub 2015 Aug 15.
8
Simple and efficient transgenesis with meganuclease constructs in zebrafish.
Methods Mol Biol. 2009;546:117-30. doi: 10.1007/978-1-60327-977-2_8.
9
TALEN-mediated precise genome modification by homologous recombination in zebrafish.
Nat Methods. 2013 Apr;10(4):329-31. doi: 10.1038/nmeth.2374. Epub 2013 Feb 24.
10
PCR artifact in testing for homologous recombination in genomic editing in zebrafish.
PLoS One. 2017 Mar 31;12(3):e0172802. doi: 10.1371/journal.pone.0172802. eCollection 2017.

引用本文的文献

2
Advanced probiotics: bioengineering and their therapeutic application.
Mol Biol Rep. 2024 Feb 25;51(1):361. doi: 10.1007/s11033-024-09309-8.
4
New CRISPR Technology for Creating Cell Models of Lipoprotein Assembly and Secretion.
Curr Atheroscler Rep. 2023 May;25(5):209-217. doi: 10.1007/s11883-023-01095-1. Epub 2023 Mar 13.
5
Recent advances in genetic tools for engineering probiotic lactic acid bacteria.
Biosci Rep. 2023 Jan 31;43(1). doi: 10.1042/BSR20211299.
6
Enhancing HR Frequency for Precise Genome Editing in Plants.
Front Plant Sci. 2022 May 3;13:883421. doi: 10.3389/fpls.2022.883421. eCollection 2022.
7
Gene targeting in polymerase theta-deficient Arabidopsis thaliana.
Plant J. 2022 Jan;109(1):112-125. doi: 10.1111/tpj.15557. Epub 2021 Nov 18.
10
No excessive mutations in transcription activator-like effector nuclease-mediated α-1,3-galactosyltransferase knockout Yucatan miniature pigs.
Asian-Australas J Anim Sci. 2020 Feb;33(2):360-372. doi: 10.5713/ajas.19.0480. Epub 2019 Aug 23.

本文引用的文献

1
Precise Editing of the Zebrafish Genome Made Simple and Efficient.
Dev Cell. 2016 Mar 21;36(6):654-67. doi: 10.1016/j.devcel.2016.02.015.
2
CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity.
Nucleic Acids Res. 2015 Dec 15;43(22):e157. doi: 10.1093/nar/gkv802. Epub 2015 Aug 7.
5
Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system.
Development. 2014 Dec;141(24):4827-30. doi: 10.1242/dev.115584. Epub 2014 Nov 19.
6
CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish.
Nat Protoc. 2014 Dec;9(12):2823-40. doi: 10.1038/nprot.2014.187. Epub 2014 Nov 13.
8
Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases.
Development. 2014 Oct;141(19):3807-18. doi: 10.1242/dev.108019. Epub 2014 Sep 5.
10
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验