Hsu Patrick D, Lander Eric S, Zhang Feng
Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.
Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.
基于与CRISPR相关的RNA引导性核酸内切酶Cas9的基因组工程技术的最新进展,使得对哺乳动物基因组功能进行系统性探究成为可能。类似于现代文字处理器中的搜索功能,Cas9可通过一段短RNA搜索序列被引导至复杂基因组内的特定位置。利用该系统,内源性基因组中的DNA序列及其功能输出现在几乎可以在任何选定的生物体中轻松编辑或调控。Cas9介导的基因扰动简单且可扩展,使研究人员能够在系统层面阐明基因组的功能组织,并建立遗传变异与生物学表型之间的因果联系。在本综述中,我们描述了Cas9在各种研究或转化应用中的发展及应用,同时强调了挑战和未来方向。Cas9源自一种卓越的微生物防御系统,正推动着从基础生物学到生物技术及医学的创新应用。