Ito Hiroshi, Sasaki Akira
Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan.
Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, Austria.
J Theor Biol. 2016 Oct 21;407:409-428. doi: 10.1016/j.jtbi.2016.07.011. Epub 2016 Jul 19.
The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely.
现有表型和潜在突变体的适应性通常应取决于其他现有表型的频率。假设突变罕见且为无性繁殖,利用适应性动力学理论可以有效地分析由这种频率依赖适应性函数驱动的适应性进化。由于发育、生理或物理限制,当可能的突变仅限于某些方向时,由此产生的适应性进化可能会局限于比原始性状空间维度更少的子空间(约束面)。为了有效地分析沿约束面的这种动态,我们在适应性动力学理论框架内开发了一种拉格朗日乘数法。在由等式约束描述的任意维度的约束面上,我们的方法能够有效地找到局部进化稳定策略、收敛稳定点和进化分支点。当表面形状可以自由选择时,我们还推导了约束面上进化分支点存在的条件。