Suppr超能文献

种特异性蛋白质抗生素在小鼠急性铜绿假单胞菌肺部感染模型中的疗效。

Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection.

作者信息

McCaughey Laura C, Ritchie Neil D, Douce Gillian R, Evans Thomas J, Walker Daniel

机构信息

Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.

The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia.

出版信息

Sci Rep. 2016 Jul 22;6:30201. doi: 10.1038/srep30201.

Abstract

Protein antibiotics, known as bacteriocins, are widely produced by bacteria for intraspecies competition. The potency and targeted action of bacteriocins suggests that they could be developed into clinically useful antibiotics against highly drug resistant Gram-negative pathogens for which there are few therapeutic options. Here we show that Pseudomonas aeruginosa specific bacteriocins, known as pyocins, show strong efficacy in a murine model of P. aeruginosa lung infection, with the concentration of pyocin S5 required to afford protection from a lethal infection at least 100-fold lower than the most commonly used inhaled antibiotic tobramycin. Additionally, pyocins are stable in the lung, poorly immunogenic at high concentrations and efficacy is maintained in the presence of pyocin specific antibodies after repeated pyocin administration. Bacteriocin encoding genes are frequently found in microbial genomes and could therefore offer a ready supply of highly targeted and potent antibiotics active against problematic Gram-negative pathogens.

摘要

被称为细菌素的蛋白质抗生素由细菌广泛产生用于种内竞争。细菌素的效力和靶向作用表明,它们可以被开发成临床上有用的抗生素,用于对抗几乎没有治疗选择的高度耐药革兰氏阴性病原体。在这里,我们表明,铜绿假单胞菌特异性细菌素,即绿脓菌素,在铜绿假单胞菌肺部感染的小鼠模型中显示出强大的疗效,提供免受致命感染保护所需的绿脓菌素S5浓度比最常用的吸入性抗生素妥布霉素低至少100倍。此外,绿脓菌素在肺部稳定,高浓度时免疫原性低,并且在重复施用绿脓菌素后,在存在绿脓菌素特异性抗体的情况下仍能保持疗效。细菌素编码基因在微生物基因组中经常被发现,因此可以提供现成的、对有问题的革兰氏阴性病原体具有活性的高度靶向和强效抗生素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/4957109/057e67590b1b/srep30201-f1.jpg

相似文献

2
Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa.
Biochem J. 2016 Aug 1;473(15):2345-58. doi: 10.1042/BCJ20160470. Epub 2016 Jun 1.
4
F-Type Pyocins Are Diverse Noncontractile Phage Tail-Like Weapons for Killing .
J Bacteriol. 2023 Jun 27;205(6):e0002923. doi: 10.1128/jb.00029-23. Epub 2023 Jun 1.
5
Pyocins and Beyond: Exploring the World of Bacteriocins in Pseudomonas aeruginosa.
Probiotics Antimicrob Proteins. 2025 Feb;17(1):240-252. doi: 10.1007/s12602-024-10322-3. Epub 2024 Jul 18.
6
Targeted Killing of Pseudomonas aeruginosa by Pyocin G Occurs via the Hemin Transporter Hur.
J Mol Biol. 2020 Jun 12;432(13):3869-3880. doi: 10.1016/j.jmb.2020.04.020. Epub 2020 Apr 25.
9
Antibacterial efficacy of R-type pyocins towards Pseudomonas aeruginosa in a murine peritonitis model.
Antimicrob Agents Chemother. 2008 May;52(5):1647-52. doi: 10.1128/AAC.01479-07. Epub 2008 Mar 10.
10
Plant-expressed pyocins for control of Pseudomonas aeruginosa.
PLoS One. 2017 Oct 3;12(10):e0185782. doi: 10.1371/journal.pone.0185782. eCollection 2017.

引用本文的文献

1
Exploring the role of gut microbiota in antibiotic resistance and prevention.
Ann Med. 2025 Dec;57(1):2478317. doi: 10.1080/07853890.2025.2478317. Epub 2025 Mar 17.
2
The role of bacterial metabolism in antimicrobial resistance.
Nat Rev Microbiol. 2025 Feb 20. doi: 10.1038/s41579-025-01155-0.
3
MvaT negatively regulates pyocin S5 expression in .
Biotechnol Notes. 2022 Dec 9;3:102-107. doi: 10.1016/j.biotno.2022.11.004. eCollection 2022.
4
Bacteriocins: potentials and prospects in health and agrifood systems.
Arch Microbiol. 2024 Apr 25;206(5):233. doi: 10.1007/s00203-024-03948-y.
5
Comprehensive Approaches for the Search and Characterization of Staphylococcins.
Microorganisms. 2023 May 18;11(5):1329. doi: 10.3390/microorganisms11051329.
6
The In Vivo and In Vitro Assessment of Pyocins in Treating Infections.
Antibiotics (Basel). 2022 Oct 7;11(10):1366. doi: 10.3390/antibiotics11101366.
8
Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents.
Front Microbiol. 2022 Sep 8;13:988728. doi: 10.3389/fmicb.2022.988728. eCollection 2022.
10
Impact of antibiotics on the human microbiome and consequences for host health.
Microbiologyopen. 2022 Feb;11(1):e1260. doi: 10.1002/mbo3.1260.

本文引用的文献

3
Lectin-like bacteriocins from Pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor.
PLoS Pathog. 2014 Feb 6;10(2):e1003898. doi: 10.1371/journal.ppat.1003898. eCollection 2014 Feb.
4
Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to kill Pseudomonas aeruginosa.
Microbiology (Reading). 2014 Feb;160(Pt 2):261-269. doi: 10.1099/mic.0.070672-0. Epub 2013 Nov 11.
6
The FDA reboot of antibiotic development.
Antimicrob Agents Chemother. 2013 Oct;57(10):4605-7. doi: 10.1128/AAC.01277-13. Epub 2013 Jul 29.
7
Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF.
Science. 2013 Jun 28;340(6140):1570-4. doi: 10.1126/science.1237864.
8
Genetically programmable pathogen sense and destroy.
ACS Synth Biol. 2013 Dec 20;2(12):715-23. doi: 10.1021/sb4000417. Epub 2013 Jul 2.
10
The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor.
Microbiologyopen. 2012 Sep;1(3):268-75. doi: 10.1002/mbo3.27. Epub 2012 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验