Menon Govind, Krishnan J
Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
J Chem Phys. 2016 Jul 21;145(3):035103. doi: 10.1063/1.4953914.
While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.
虽然信号传导和生化模块一直是众多研究的重点,但它们通常是孤立进行研究的,并未考察周围网络的影响。在本文中,我们构建并开发了一个基于动力系统的系统框架,通过研究信号传导模块之间的相互作用来理解此类影响。我们考虑的模块包括:(i)基本共价修饰,(ii)单稳态开关,(iii)双稳态开关,(iv)自适应模块,以及(v)振荡模块。我们通过分析以下三种情况来系统地考察这些模块之间的相互作用:(a)无共享组件的顺序相互作用,(b)有共享组件的顺序相互作用,以及(c)斜向相互作用。我们的研究表明,一个模块在孤立状态下的行为可能与在网络中的行为有很大不同,并明确展示了给定模块的行为、周围网络的特征以及共享组件的可能性如何能够产生新的效应。我们的全局方法阐明了模块结构和功能的不同方面,揭示了动力学特征以及生化特征的重要性;这为研究由进化塑造的天然模块的复杂性、阐明周围网络在多种细胞环境中对一个模块的影响以及突出工程化稳健合成模块的能力和限制提供了一个方法平台。总体而言,这样一个系统框架为弥合孤立状态下以及作为网络一部分的非线性信息处理模块之间的差距提供了一个平台,并为理解天然和工程化细胞网络的新方面奠定了基础。