Blätke Mary Ann, Dittrich Anna, Rohr Christian, Heiner Monika, Schaper Fred, Marwan Wolfgang
Lehrstuhl für Regulationsbiologie and Magdeburg Centre for Systems Biology, Otto-von-Guericke Universität, Magdeburg, Germany.
Mol Biosyst. 2013 Jun;9(6):1290-307. doi: 10.1039/c3mb25593j. Epub 2013 Feb 26.
Mathematical models of molecular networks regulating biological processes in cells or organisms are most frequently designed as sets of ordinary differential equations. Various modularisation methods have been applied to reduce the complexity of models, to analyse their structural properties, to separate biological processes, or to reuse model parts. Taking the JAK/STAT signalling pathway with the extensive combinatorial cross-talk of its components as a case study, we make a natural approach to modularisation by creating one module for each biomolecule. Each module consists of a Petri net and associated metadata and is organised in a database publically accessible through a web interface (). The Petri net describes the reaction mechanism of a given biomolecule and its functional interactions with other components including relevant conformational states. The database is designed to support the curation, documentation, version control, and update of individual modules, and to assist the user in automatically composing complex models from modules. Biomolecule centred modules, associated metadata, and database support together allow the automatic creation of models by considering differential gene expression in given cell types or under certain physiological conditions or states of disease. Modularity also facilitates exploring the consequences of alternative molecular mechanisms by comparative simulation of automatically created models even for users without mathematical skills. Models may be selectively executed as an ODE system, stochastic, or qualitative models or hybrid and exported in the SBML format. The fully automated generation of models of redesigned networks by metadata-guided modification of modules representing biomolecules with mutated function or specificity is proposed.
调节细胞或生物体中生物过程的分子网络的数学模型,大多被设计成常微分方程组。人们应用了各种模块化方法来降低模型的复杂性、分析其结构特性、分离生物过程或复用模型部件。以具有广泛组合串扰成分的JAK/STAT信号通路为例,我们通过为每个生物分子创建一个模块,采用了一种自然的模块化方法。每个模块由一个Petri网和相关元数据组成,并组织在一个可通过网页界面公开访问的数据库中。Petri网描述了给定生物分子的反应机制及其与其他成分(包括相关构象状态)的功能相互作用。该数据库旨在支持对各个模块的管理、记录、版本控制和更新,并协助用户从模块自动构建复杂模型。以生物分子为中心的模块、相关元数据和数据库支持共同使得通过考虑给定细胞类型或特定生理条件或疾病状态下的差异基因表达来自动创建模型成为可能。模块化还便于通过对自动创建的模型进行比较模拟来探索替代分子机制的后果,即使对于没有数学技能的用户也是如此。模型可以作为常微分方程系统、随机或定性模型或混合模型有选择地执行,并以SBML格式导出。本文提出了通过对代表具有突变功能或特异性的生物分子的模块进行元数据引导的修改,来全自动生成重新设计网络的模型。