Klassen Viktor, Blifernez-Klassen Olga, Wobbe Lutz, Schlüter Andreas, Kruse Olaf, Mussgnug Jan H
Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany.
Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany.
J Biotechnol. 2016 Sep 20;234:7-26. doi: 10.1016/j.jbiotec.2016.07.015. Epub 2016 Jul 20.
Photosynthetic organisms like plants and algae can harvest, convert, and store solar energy and thus represent readily available sources for renewable biofuels production on a domestic or industrial scale. Anaerobic digestion (AD) of the organic biomass yields biogas, containing methane and carbon dioxide as major constituents. Combustion of the biogas or purification of the energy-rich methane fraction can be applied to provide electricity or fuel. AD procedures have been applied for several decades with organic waste, animal products, or higher plants and more recently, utilization of photosynthetic algae as substrates have gained considerable research interest. To provide an overview of recent research efforts made to characterize the AD process of microalgal biomass, we present extended summaries of experimentally determined biochemical methane potentials (BMP), biomass pretreatment options and digestion strategies in this article. We conclude that cultivation options, biomass composition and time of harvesting, application of biomass pretreatment strategies, and parameters of the digestion process are all important factors, which can significantly affect the AD process efficiency. The transition from batch to continuous microalgal biomass digestion trials, accompanied by state-of-the-art analytical techniques, is now in demand to refine the assessments of the overall process feasibility.
像植物和藻类这样的光合生物能够收集、转化和储存太阳能,因此是国内或工业规模可再生生物燃料生产的现成可用来源。有机生物质的厌氧消化(AD)产生沼气,其主要成分是甲烷和二氧化碳。沼气燃烧或富含能量的甲烷部分的提纯可用于提供电力或燃料。AD程序已经应用于有机废物、动物产品或高等植物几十年了,最近,利用光合藻类作为底物受到了相当大的研究关注。为了概述最近为表征微藻生物质的AD过程所做的研究工作,我们在本文中给出了实验测定的生化甲烷潜力(BMP)、生物质预处理选项和消化策略的扩展总结。我们得出结论,培养选项、生物质组成和收获时间、生物质预处理策略的应用以及消化过程的参数都是重要因素,它们会显著影响AD过程的效率。现在需要从分批微藻生物质消化试验向连续试验转变,并结合最先进的分析技术,以完善对整个过程可行性的评估。