Nawrotek Agata, Zeghouf Mahel, Cherfils Jacqueline
a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France.
Small GTPases. 2016 Oct;7(4):283-296. doi: 10.1080/21541248.2016.1215778. Epub 2016 Jul 22.
Arf GTPases assemble protein complexes on membranes to carry out major functions in cellular traffic. An essential step is their activation by guanine nucleotide exchange factors (GEFs), whose Sec7 domain stimulates GDP/GTP exchange. ArfGEFs form 2 major families: ArfGEFs with DCB, HUS and HDS domains (GBF1 and BIG1/BIG2 in humans), which act at the Golgi; and ArfGEFs with a C-terminal PH domain (cytohesin, EFA6 and BRAG), which function at the plasma membrane and endosomes. In addition, pathogenic bacteria encode an ArfGEF with a unique membrane-binding domain. Here we review the allosteric regulation of Arf GTPases and their GEFs at the membrane interface. Membranes contribute several regulatory layers: at the GTPase level, where activation by GTP is coupled to membrane recruitment by a built-in structural device; at the Sec7 domain, which manipulates this device to ensure that Arf-GTP is attached to membranes; and at the level of non-catalytic ArfGEF domains, which form direct or GTPase-mediated interactions with membranes that enable a spectacular diversity of regulatory regimes. Notably, we show here that membranes increase the efficiency of a large ArfGEF (human BIG1) by 32-fold by interacting directly with its N-terminal DCB and HUS domains. The diversity of allosteric regulatory regimes suggests that ArfGEFs can function in cascades and circuits to modulate the shape, amplitude and duration of Arf signals in cells. Because Arf-like GTPases feature autoinhibitory elements similar to those of Arf GTPases, we propose that their activation also requires allosteric interactions of these elements with membranes or other proteins.
Arf GTP酶在膜上组装蛋白质复合物,以在细胞运输中执行主要功能。一个关键步骤是它们被鸟嘌呤核苷酸交换因子(GEF)激活,GEF的Sec7结构域刺激GDP / GTP交换。ArfGEF形成两个主要家族:具有DCB、HUS和HDS结构域的ArfGEF(人类中的GBF1和BIG1 / BIG2),其作用于高尔基体;以及具有C末端PH结构域的ArfGEF(细胞粘附素、EFA6和BRAG),其在质膜和内体中发挥作用。此外,致病细菌编码一种具有独特膜结合结构域的ArfGEF。在这里,我们综述了Arf GTP酶及其GEF在膜界面的变构调节。膜贡献了几个调节层面:在GTP酶水平,GTP激活与通过内置结构装置进行的膜募集相耦合;在Sec7结构域,其操纵该装置以确保Arf - GTP附着于膜;以及在非催化性ArfGEF结构域水平,其与膜形成直接或GTP酶介导的相互作用,从而实现多种壮观的调节机制。值得注意的是,我们在此表明,膜通过直接与其N末端的DCB和HUS结构域相互作用,将大型ArfGEF(人类BIG1)的效率提高了32倍。变构调节机制的多样性表明,ArfGEF可以在级联和回路中发挥作用,以调节细胞中Arf信号的形状、幅度和持续时间。由于类Arf GTP酶具有与Arf GTP酶类似的自抑制元件,我们提出它们的激活也需要这些元件与膜或其他蛋白质的变构相互作用。