Suppr超能文献

膜界面处Arf GTP酶及其鸟嘌呤核苷酸交换因子(GEF)的变构调节。

Allosteric regulation of Arf GTPases and their GEFs at the membrane interface.

作者信息

Nawrotek Agata, Zeghouf Mahel, Cherfils Jacqueline

机构信息

a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France.

出版信息

Small GTPases. 2016 Oct;7(4):283-296. doi: 10.1080/21541248.2016.1215778. Epub 2016 Jul 22.

Abstract

Arf GTPases assemble protein complexes on membranes to carry out major functions in cellular traffic. An essential step is their activation by guanine nucleotide exchange factors (GEFs), whose Sec7 domain stimulates GDP/GTP exchange. ArfGEFs form 2 major families: ArfGEFs with DCB, HUS and HDS domains (GBF1 and BIG1/BIG2 in humans), which act at the Golgi; and ArfGEFs with a C-terminal PH domain (cytohesin, EFA6 and BRAG), which function at the plasma membrane and endosomes. In addition, pathogenic bacteria encode an ArfGEF with a unique membrane-binding domain. Here we review the allosteric regulation of Arf GTPases and their GEFs at the membrane interface. Membranes contribute several regulatory layers: at the GTPase level, where activation by GTP is coupled to membrane recruitment by a built-in structural device; at the Sec7 domain, which manipulates this device to ensure that Arf-GTP is attached to membranes; and at the level of non-catalytic ArfGEF domains, which form direct or GTPase-mediated interactions with membranes that enable a spectacular diversity of regulatory regimes. Notably, we show here that membranes increase the efficiency of a large ArfGEF (human BIG1) by 32-fold by interacting directly with its N-terminal DCB and HUS domains. The diversity of allosteric regulatory regimes suggests that ArfGEFs can function in cascades and circuits to modulate the shape, amplitude and duration of Arf signals in cells. Because Arf-like GTPases feature autoinhibitory elements similar to those of Arf GTPases, we propose that their activation also requires allosteric interactions of these elements with membranes or other proteins.

摘要

Arf GTP酶在膜上组装蛋白质复合物,以在细胞运输中执行主要功能。一个关键步骤是它们被鸟嘌呤核苷酸交换因子(GEF)激活,GEF的Sec7结构域刺激GDP / GTP交换。ArfGEF形成两个主要家族:具有DCB、HUS和HDS结构域的ArfGEF(人类中的GBF1和BIG1 / BIG2),其作用于高尔基体;以及具有C末端PH结构域的ArfGEF(细胞粘附素、EFA6和BRAG),其在质膜和内体中发挥作用。此外,致病细菌编码一种具有独特膜结合结构域的ArfGEF。在这里,我们综述了Arf GTP酶及其GEF在膜界面的变构调节。膜贡献了几个调节层面:在GTP酶水平,GTP激活与通过内置结构装置进行的膜募集相耦合;在Sec7结构域,其操纵该装置以确保Arf - GTP附着于膜;以及在非催化性ArfGEF结构域水平,其与膜形成直接或GTP酶介导的相互作用,从而实现多种壮观的调节机制。值得注意的是,我们在此表明,膜通过直接与其N末端的DCB和HUS结构域相互作用,将大型ArfGEF(人类BIG1)的效率提高了32倍。变构调节机制的多样性表明,ArfGEF可以在级联和回路中发挥作用,以调节细胞中Arf信号的形状、幅度和持续时间。由于类Arf GTP酶具有与Arf GTP酶类似的自抑制元件,我们提出它们的激活也需要这些元件与膜或其他蛋白质的变构相互作用。

相似文献

1
Allosteric regulation of Arf GTPases and their GEFs at the membrane interface.
Small GTPases. 2016 Oct;7(4):283-296. doi: 10.1080/21541248.2016.1215778. Epub 2016 Jul 22.
2
Interactions between conserved domains within homodimers in the BIG1, BIG2, and GBF1 Arf guanine nucleotide exchange factors.
J Biol Chem. 2007 Sep 28;282(39):28834-28842. doi: 10.1074/jbc.M705525200. Epub 2007 Jul 19.
4
EFA6 controls Arf1 and Arf6 activation through a negative feedback loop.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12378-83. doi: 10.1073/pnas.1409832111. Epub 2014 Aug 11.
5
Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors.
Structure. 2018 Jan 2;26(1):106-117.e6. doi: 10.1016/j.str.2017.11.019. Epub 2017 Dec 21.
6
The HUS box is required for allosteric regulation of the Sec7 Arf-GEF.
J Biol Chem. 2018 May 4;293(18):6682-6691. doi: 10.1074/jbc.RA117.001318. Epub 2018 Mar 7.
8
10
A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis.
PLoS Genet. 2018 Nov 15;14(11):e1007795. doi: 10.1371/journal.pgen.1007795. eCollection 2018 Nov.

引用本文的文献

2
Sec7 regulatory domains scaffold autoinhibited and active conformations.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2318615121. doi: 10.1073/pnas.2318615121. Epub 2024 Feb 28.
3
4
The ARF GTPase regulatory network in collective invasion and metastasis.
Biochem Soc Trans. 2023 Aug 31;51(4):1559-1569. doi: 10.1042/BST20221355.
5
Ciliary ARL13B inhibits developmental kidney cystogenesis in mouse.
Dev Biol. 2023 Aug;500:1-9. doi: 10.1016/j.ydbio.2023.05.004. Epub 2023 May 18.
6
Src activates retrograde membrane traffic through phosphorylation of GBF1.
Elife. 2021 Dec 6;10:e68678. doi: 10.7554/eLife.68678.
7
Reconstitution of human atlastin fusion activity reveals autoinhibition by the C terminus.
J Cell Biol. 2022 Feb 7;221(2). doi: 10.1083/jcb.202107070. Epub 2021 Nov 24.
8
Shared and specific functions of Arfs 1-5 at the Golgi revealed by systematic knockouts.
J Cell Biol. 2022 Jan 3;221(1). doi: 10.1083/jcb.202106100. Epub 2021 Nov 8.
10
ARL3 activation requires the co-GEF BART and effector-mediated turnover.
Elife. 2021 Jan 13;10:e64624. doi: 10.7554/eLife.64624.

本文引用的文献

1
Structural Insights into Arl1-Mediated Targeting of the Arf-GEF BIG1 to the trans-Golgi.
Cell Rep. 2016 Jul 19;16(3):839-50. doi: 10.1016/j.celrep.2016.06.022. Epub 2016 Jun 30.
2
Allosteric properties of PH domains in Arf regulatory proteins.
Cell Logist. 2016 Apr 26;6(2):e1181700. doi: 10.1080/21592799.2016.1181700. eCollection 2016 Apr-Jun.
5
Effect of the N-Terminal Helix and Nucleotide Loading on the Membrane and Effector Binding of Arl2/3.
Biophys J. 2015 Oct 20;109(8):1619-29. doi: 10.1016/j.bpj.2015.08.033.
6
The Interaction of CCDC104/BARTL1 with Arl3 and Implications for Ciliary Function.
Structure. 2015 Nov 3;23(11):2122-32. doi: 10.1016/j.str.2015.08.016. Epub 2015 Oct 9.
7
Allostery without a conformational change? Revisiting the paradigm.
Curr Opin Struct Biol. 2015 Feb;30:17-24. doi: 10.1016/j.sbi.2014.11.005. Epub 2014 Dec 11.
8
On the use of Legionella/Rickettsia chimeras to investigate the structure and regulation of Rickettsia effector RalF.
J Struct Biol. 2015 Feb;189(2):98-104. doi: 10.1016/j.jsb.2014.12.001. Epub 2014 Dec 9.
9
Arf GTPases and their effectors: assembling multivalent membrane-binding platforms.
Curr Opin Struct Biol. 2014 Dec;29:67-76. doi: 10.1016/j.sbi.2014.09.007. Epub 2014 Nov 20.
10
Structural basis for membrane targeting of the BBSome by ARL6.
Nat Struct Mol Biol. 2014 Dec;21(12):1035-41. doi: 10.1038/nsmb.2920. Epub 2014 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验