Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA.
Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
J Cell Biol. 2022 Feb 7;221(2). doi: 10.1083/jcb.202107070. Epub 2021 Nov 24.
ER network formation depends on membrane fusion by the atlastin (ATL) GTPase. In humans, three paralogs are differentially expressed with divergent N- and C-terminal extensions, but their respective roles remain unknown. This is partly because, unlike Drosophila ATL, the fusion activity of human ATLs has not been reconstituted. Here, we report successful reconstitution of fusion activity by the human ATLs. Unexpectedly, the major splice isoforms of ATL1 and ATL2 are each autoinhibited, albeit to differing degrees. For the more strongly inhibited ATL2, autoinhibition mapped to a C-terminal α-helix is predicted to be continuous with an amphipathic helix required for fusion. Charge reversal of residues in the inhibitory domain strongly activated its fusion activity, and overexpression of this disinhibited version caused ER collapse. Neurons express an ATL2 splice isoform whose sequence differs in the inhibitory domain, and this form showed full fusion activity. These findings reveal autoinhibition and alternate splicing as regulators of atlastin-mediated ER fusion.
内质网网络的形成依赖于 atlastin(ATL)GTP 酶的膜融合。在人类中,三个基因的同源物差异表达,并具有不同的 N 端和 C 端延伸,但它们各自的作用仍不清楚。这在一定程度上是因为,与果蝇 ATL 不同,人类 ATLs 的融合活性尚未被重建。在这里,我们报告了人类 ATLs 融合活性的成功重建。出乎意料的是,ATL1 和 ATL2 的主要剪接异构体都存在自身抑制,尽管抑制程度不同。对于抑制程度更强的 ATL2,预测其抑制性结构域中的 C 端α-螺旋与融合所需的两亲性螺旋连续。抑制结构域中残基的电荷反转强烈激活了其融合活性,并且这种去抑制形式的过表达导致内质网崩溃。神经元表达一种 ATL2 剪接异构体,其在抑制结构域中的序列不同,这种形式表现出完全的融合活性。这些发现揭示了自身抑制和交替剪接作为内质网融合的 atlastin 介导的调节因子。