Cai Aijun, Wang Xiuping, Guo Aiying, Chang Yongfang
College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, PR China.
College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, PR China.
J Photochem Photobiol B. 2016 Sep;162:486-492. doi: 10.1016/j.jphotobiol.2016.07.020. Epub 2016 Jul 20.
Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts.
采用受贻贝启发的方法在室温下合成了聚多巴胺 - 银 - 氯化银复合材料(PDA - Ag - AgCl),其中聚多巴胺作为还原剂从前体中获得贵金属银纳米颗粒。通过多种技术对所制备的PDA - Ag - AgCl的形貌和结构进行了表征,包括场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、拉曼光谱和X射线光电子能谱(XPS)。形态学观察描绘了具有各种微米级直径的纳米颗粒的形成,表面XPS分析表明存在包括Ag、N、Cl和O在内的各种元素。通过紫外 - 可见漫反射光谱(DRS)证实了PDA - Ag - AgCl颗粒在可见光区域的吸光度增强,并通过光致发光(PL)和光电流响应证明了电荷转移。合成的PDA - Ag - AgCl复合材料可作为可见光驱动的光催化剂用于罗丹明B的降解。光催化活性的提高归因于从等离子体激发的Ag到AgCl的有效电荷转移,这可以提高光催化反应过程中电荷分离的效率。此外,注意到不同的PDA - Ag - AgCl复合材料之间的光催化性能存在差异,这可能归因于布鲁诺尔 - 埃米特 - 泰勒(BET)比表面积,其有利于有效捕获可见光。PDA - Ag - AgCl表现出优异的稳定性,在5次循环后活性没有明显损失。所提出的方法成本低且环境友好,因此是制备等离子体光催化剂的一种有前途的新方法。