Cui Dong, Pu Weiting, Liu Jing, Bian Zhijie, Li Qiuli, Wang Lei, Gu Guanghua
School of Information Science and Engineering, Yanshan University, Qinhuangdao, China.
Department of Neurology, The Rocket Force General Hospital of PLA, Beijing, China.
Neural Netw. 2016 Oct;82:30-8. doi: 10.1016/j.neunet.2016.06.004. Epub 2016 Jul 5.
Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estimator measure to generate a new method named S-estimator based normalized weighted-permutation mutual information (SNWPMI) for analyzing multi-channel electroencephalographic (EEG) synchronization strength. The performances including the effects of time delay, embedding dimension, coupling coefficients, signal to noise ratios (SNRs) and data length of the NWPMI are evaluated by using Coupled Henon mapping model. The results show that the NWPMI is superior in describing the synchronization compared with the normalized permutation mutual information (NPMI). Furthermore, the proposed SNWPMI method is applied to analyze scalp EEG data from 26 amnestic mild cognitive impairment (aMCI) subjects and 20 age-matched controls with normal cognitive function, who both suffer from type 2 diabetes mellitus (T2DM). The proposed methods NWPMI and SNWPMI are suggested to be an effective index to estimate the synchronization strength.
同步是理解正常或异常大脑中信息处理的重要机制。在本文中,我们提出了一种名为归一化加权排列互信息(NWPMI)的新方法用于双变量信号同步分析,并将NWPMI与S估计量测度相结合,生成一种名为基于S估计量的归一化加权排列互信息(SNWPMI)的新方法,用于分析多通道脑电图(EEG)同步强度。利用耦合亨农映射模型评估了NWPMI的性能,包括时间延迟、嵌入维度、耦合系数、信噪比(SNR)和数据长度的影响。结果表明,与归一化排列互信息(NPMI)相比,NWPMI在描述同步方面更具优势。此外,所提出的SNWPMI方法被应用于分析26名遗忘型轻度认知障碍(aMCI)患者和20名年龄匹配的认知功能正常的对照者的头皮EEG数据,他们均患有2型糖尿病(T2DM)。所提出的方法NWPMI和SNWPMI被认为是估计同步强度的有效指标。