IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):1908-1917. doi: 10.1109/TNSRE.2018.2862396. Epub 2018 Aug 2.
Type 2 diabetes mellitus (T2DM) increases the risk of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). aMCI is the transitory stage from normal cognition to AD, which seriously impacts the quality of human life, especially for old people. Electroencephalography (EEG) coherence can assess the functional connectivity between different brain regions, which is an effective way to research the pathogenesis of aMCI and distinguish aMCI patients from normal cognitive subjects. In this paper, we propose a new EEG coherence approach named magnitude squared coherence based on weighted canonical correlation analysis (WCCA-MSC) which improves the accuracy in coherence estimation by the means of weighting. In comparison to the magnitude squared coherence based on canonical correlation analysis (CCA-MSC) and magnitude squared coherence based on reduced-rank canonical correlation analysis (RCCA-MSC), the proposed WCCA-MSC behaves better in the influence of noise and relative amplitude of frequency components and provides more accuracy at non-coherent frequencies. The application of the new method to EEG signals showed increased coherence in Delta and Theta frequency bands decreased coherence in an Alpha frequency band in aMCI patients. Considering its property of better performance, the proposed coherence method is of great advantage in analyzing the pathogenesis of aMCI with T2DM.
2 型糖尿病(T2DM)增加了遗忘型轻度认知障碍(aMCI)和阿尔茨海默病(AD)的风险。aMCI 是从正常认知到 AD 的过渡阶段,严重影响人类生活质量,尤其是老年人。脑电图(EEG)相干性可以评估不同脑区之间的功能连接,是研究 aMCI 发病机制、区分 aMCI 患者和正常认知受试者的有效方法。在本文中,我们提出了一种新的 EEG 相干性方法,称为基于加权典型相关分析的平方幅度相干性(WCCA-MSC),通过加权来提高相干性估计的准确性。与基于典型相关分析的平方幅度相干性(CCA-MSC)和基于降秩典型相关分析的平方幅度相干性(RCCA-MSC)相比,所提出的 WCCA-MSC 在噪声和频率分量相对幅度的影响下表现更好,在非相干频率下提供更高的准确性。该新方法在 EEG 信号中的应用表明,aMCI 患者的 Delta 和 Theta 频带的相干性增加,Alpha 频带的相干性降低。考虑到其性能更好的特点,所提出的相干性方法在分析 T2DM 伴发的 aMCI 发病机制方面具有很大优势。