Grotberg J B, Gavriely N
Department of Biomedical Engineering, Northwestern University, Evanston 60208.
J Appl Physiol (1985). 1989 May;66(5):2262-73. doi: 10.1152/jappl.1989.66.5.2262.
A mathematical analysis of flow through a flexible channel is examined as a model of flow-induced flutter oscillations that pertain to the production of wheezing breath sounds. The model provides predictions for the critical fluid speed that will initiate flutter waves of the wall, as well as their frequency and wavelength. The mathematical results are separated into linear theory (small oscillations) and nonlinear theory (larger oscillations). Linear theory determines the onset of the flutter, whereas nonlinear theory determines the relationships between the fluid speed and both the wave amplitudes and frequencies. The linear theory predictions correlate well with data taken at the onset of flutter and flow limitation during experiments of airflow in thick-walled collapsible tubes. The nonlinear theory predictions correlate well with data taken as these flows are forced to higher velocities while keeping the flow rate constant. Particular ranges of the parameters are selected to investigate and discuss the applications to airway flows. According to this theory, the mechanism of generation of wheezes is based in the interactions of fluid forces and friction and wall elastic-restoring forces and damping. In particular, a phase delay between the fluid pressure and wall motion is necessary. The wave speed theory of flow limitation is discussed with respect to the specific data and the flutter model.
对通过柔性通道的流动进行数学分析,将其作为与哮鸣呼吸音产生相关的流动诱发颤振振荡的模型。该模型提供了引发壁面颤振波的临界流体速度及其频率和波长的预测。数学结果分为线性理论(小振荡)和非线性理论(大振荡)。线性理论确定颤振的起始,而非线性理论确定流体速度与波幅和频率之间的关系。线性理论预测与在厚壁可塌陷管中气流实验中颤振起始和流量限制时获取的数据相关性良好。非线性理论预测与在保持流速恒定的情况下将这些流动强制到更高速度时获取的数据相关性良好。选择特定的参数范围来研究和讨论其在气道流动中的应用。根据该理论,哮鸣产生的机制基于流体力与摩擦力以及壁面弹性恢复力与阻尼之间的相互作用。特别地,流体压力与壁面运动之间的相位延迟是必要的。针对具体数据和颤振模型讨论了流量限制的波速理论。