Suppr超能文献

剪接中的RNA结构:进化视角

RNA structure in splicing: An evolutionary perspective.

作者信息

Lin Chien-Ling, Taggart Allison J, Fairbrother William G

机构信息

a Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence , RI , USA.

b Center for Computational Molecular Biology, Brown University , Providence , RI , USA.

出版信息

RNA Biol. 2016 Sep;13(9):766-71. doi: 10.1080/15476286.2016.1208893. Epub 2016 Jul 25.

Abstract

Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we discuss the prevalence and potential functions of highly structured introns. In humans, structured introns usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the exons that encode the highly polymorphic β sheet cleft, making the processing of the transcript robust to variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often compose structured intron can make structured introns themselves rapidly evolving elements.

摘要

前体mRNA剪接是一种关键的转录后调控过程,在此过程中,内含子被切除,外显子被连接在一起。最近在鱼类中发现了一类新型的结构化内含子。在内含子相对边界处互补的AC和GT二聚体的简单扩展被发现可形成一种桥接结构,从而促使内含子两端的剪接位点正确配对。在一些鱼类内含子中,RNA结构足够强大,以至于无需调控蛋白因子即可进行剪接。在此,我们讨论高度结构化内含子的普遍性及其潜在功能。在人类中,结构化内含子通常通过内含子边界处富含C和G的重复序列共同出现而产生。我们探讨了HLA受体基因这一具有潜在指导意义的例子。在HLA前体mRNA中,结构化内含子位于编码高度多态性β折叠裂隙的外显子两侧,使得转录本的加工过程对破坏剪接因子结合的变异具有较强的耐受性。虽然塑造HLA受体的选择压力相当特殊,但许多其他编码受体的高度多态性基因都含有结构化内含子。最后,我们讨论了与通常构成结构化内含子的简单重复序列相关的突变率升高如何使结构化内含子本身成为快速进化的元件。

相似文献

1
RNA structure in splicing: An evolutionary perspective.
RNA Biol. 2016 Sep;13(9):766-71. doi: 10.1080/15476286.2016.1208893. Epub 2016 Jul 25.
2
The effects of structure on pre-mRNA processing and stability.
Methods. 2017 Aug 1;125:36-44. doi: 10.1016/j.ymeth.2017.06.001. Epub 2017 Jun 6.
3
RNA structure replaces the need for U2AF2 in splicing.
Genome Res. 2016 Jan;26(1):12-23. doi: 10.1101/gr.181008.114. Epub 2015 Nov 13.
6
Inverse splicing of a discontinuous pre-mRNA intron generates a circular exon in a HeLa cell nuclear extract.
Nucleic Acids Res. 1996 Nov 1;24(21):4152-7. doi: 10.1093/nar/24.21.4152.
7
The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16176-81. doi: 10.1073/pnas.0508489102. Epub 2005 Oct 31.

引用本文的文献

2
From benign to pathogenic variants and vice versa: pyrimidine transitions at position -3 of TAG and CAG 3' splice sites.
J Hum Genet. 2025 Mar;70(3):125-133. doi: 10.1038/s10038-024-01308-8. Epub 2024 Dec 5.
3
Identification of RNA structures and their roles in RNA functions.
Nat Rev Mol Cell Biol. 2024 Oct;25(10):784-801. doi: 10.1038/s41580-024-00748-6. Epub 2024 Jun 26.
5
Genome-wide detection of human variants that disrupt intronic branchpoints.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2211194119. doi: 10.1073/pnas.2211194119. Epub 2022 Oct 28.
6
Modulation of pre-mRNA structure by hnRNP proteins regulates alternative splicing of .
Sci Adv. 2022 Aug 5;8(31):eabp9153. doi: 10.1126/sciadv.abp9153. Epub 2022 Aug 3.
8
Unique and Repeated Stwintrons (Spliceosomal Twin Introns) in the Hypoxylaceae.
J Fungi (Basel). 2022 Apr 13;8(4):397. doi: 10.3390/jof8040397.
9
Co-transcriptional splicing efficiency is a gene-specific feature that can be regulated by TGFβ.
Commun Biol. 2022 Mar 28;5(1):277. doi: 10.1038/s42003-022-03224-z.

本文引用的文献

1
SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
Nucleic Acids Res. 2016 Apr 20;44(7):e63. doi: 10.1093/nar/gkv1479. Epub 2015 Dec 19.
2
RNA structure replaces the need for U2AF2 in splicing.
Genome Res. 2016 Jan;26(1):12-23. doi: 10.1101/gr.181008.114. Epub 2015 Nov 13.
3
Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point.
Cell Rep. 2015 Nov 3;13(5):1033-45. doi: 10.1016/j.celrep.2015.09.053. Epub 2015 Oct 22.
4
Structure of a yeast spliceosome at 3.6-angstrom resolution.
Science. 2015 Sep 11;349(6253):1182-91. doi: 10.1126/science.aac7629. Epub 2015 Aug 20.
5
Structural basis of pre-mRNA splicing.
Science. 2015 Sep 11;349(6253):1191-8. doi: 10.1126/science.aac8159. Epub 2015 Aug 20.
6
Splicing inhibition of U2AF65 leads to alternative exon skipping.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9926-31. doi: 10.1073/pnas.1500639112. Epub 2015 Jul 27.
7
Genomic functions of U2AF in constitutive and regulated splicing.
RNA Biol. 2015;12(5):479-85. doi: 10.1080/15476286.2015.1020272.
8
Mechanisms and Regulation of Alternative Pre-mRNA Splicing.
Annu Rev Biochem. 2015;84:291-323. doi: 10.1146/annurev-biochem-060614-034316. Epub 2015 Mar 12.
9
Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges.
Nat Struct Mol Biol. 2013 Dec;20(12):1434-42. doi: 10.1038/nsmb.2699. Epub 2013 Nov 10.
10
Alternative splicing: a pivotal step between eukaryotic transcription and translation.
Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65. doi: 10.1038/nrm3525. Epub 2013 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验