Lin Chien-Ling, Taggart Allison J, Fairbrother William G
a Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence , RI , USA.
b Center for Computational Molecular Biology, Brown University , Providence , RI , USA.
RNA Biol. 2016 Sep;13(9):766-71. doi: 10.1080/15476286.2016.1208893. Epub 2016 Jul 25.
Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we discuss the prevalence and potential functions of highly structured introns. In humans, structured introns usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the exons that encode the highly polymorphic β sheet cleft, making the processing of the transcript robust to variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often compose structured intron can make structured introns themselves rapidly evolving elements.
前体mRNA剪接是一种关键的转录后调控过程,在此过程中,内含子被切除,外显子被连接在一起。最近在鱼类中发现了一类新型的结构化内含子。在内含子相对边界处互补的AC和GT二聚体的简单扩展被发现可形成一种桥接结构,从而促使内含子两端的剪接位点正确配对。在一些鱼类内含子中,RNA结构足够强大,以至于无需调控蛋白因子即可进行剪接。在此,我们讨论高度结构化内含子的普遍性及其潜在功能。在人类中,结构化内含子通常通过内含子边界处富含C和G的重复序列共同出现而产生。我们探讨了HLA受体基因这一具有潜在指导意义的例子。在HLA前体mRNA中,结构化内含子位于编码高度多态性β折叠裂隙的外显子两侧,使得转录本的加工过程对破坏剪接因子结合的变异具有较强的耐受性。虽然塑造HLA受体的选择压力相当特殊,但许多其他编码受体的高度多态性基因都含有结构化内含子。最后,我们讨论了与通常构成结构化内含子的简单重复序列相关的突变率升高如何使结构化内含子本身成为快速进化的元件。