NanoEngineering Department, University of California , San Diego 9500 Gilman Drive MC 0448, La Jolla, California 92093-0448, United States.
ACS Nano. 2016 Aug 23;10(8):7523-31. doi: 10.1021/acsnano.6b02403. Epub 2016 Aug 8.
Tip-enhanced Raman spectroscopy enables access to chemical information with nanoscale spatial resolution and single-molecule sensitivities by utilizing optical probes that are capable of confining light to subwavelength dimensions. Because the probes themselves possess nanoscale features, they are notoriously difficult to fabricate, and more critically, can result in poor reproducibility. Here, we demonstrate high-performance, predictable, and readily tunable nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal surface, these probes behave like nanoantenna by supporting a strong optical resonance, producing dramatic Raman field enhancements in the range of 10(8)-10(9) with sub-50 nm spatial resolution. In contrast to other nanospectroscopy probes, our colloidal probes can be fabricated in a scalable fashion with a batch-to-batch reproducibility of ∼80% and serve as an important demonstration of bottom-up engineering.
基于 tip-enhanced Raman spectroscopy 的技术通过利用能够将光限制在亚波长尺寸的光学探针,可以实现具有纳米级空间分辨率和单分子灵敏度的化学信息获取。由于探针本身具有纳米级特征,因此它们的制造极具挑战性,更重要的是,这会导致较差的重现性。在这里,我们展示了通过自组装制造的高性能、可预测且易于调节的纳米光谱探针。将成型的金属纳米颗粒组织成密集层并沉积到扫描探针尖端上。当与金属表面耦合时,这些探针通过支持强光学共振表现为纳米天线,从而在亚 50nm 的空间分辨率下产生 10(8)-10(9)范围内的显著 Raman 场增强。与其他纳米光谱探针相比,我们的胶体探针可以以可扩展的方式制造,具有约 80%的批间重现性,这是自下而上工程的重要演示。