Sykes Matthew E, Stewart Jon W, Akselrod Gleb M, Kong Xiang-Tian, Wang Zhiming, Gosztola David J, Martinson Alex B F, Rosenmann Daniel, Mikkelsen Maiken H, Govorov Alexander O, Wiederrecht Gary P
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA.
Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
Nat Commun. 2017 Oct 17;8(1):986. doi: 10.1038/s41467-017-01069-3.
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers, which we propose arise from anisotropic electron-electron scattering within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold, whereas the quantum process of hot electron generation takes place in both components. Our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.The creation of energetic electrons through plasmon excitation has implications in optical energy conversion and ultrafast nanophotonics. Here, the authors find evidence for three subpopulations of nonthermal carriers which arise from anisotropic electron-electron scattering near the Fermi surface.
通过纳米结构的等离激元激发在热化之前产生高能电子已被提出用于光能量转换和超快纳米光子学中的大量应用。然而,“非热”电子的使用主要受到低产生效率及其超快衰减的限制。我们报告了关于使用宽带等离激元纳米贴片超表面的实验和理论结果,该超表面由与银纳米立方体耦合的金基底组成,可产生大量热电子,我们使用瞬态吸收光谱对其进行测量。我们发现了非热载流子的三个亚群的证据,我们认为这是由费米表面附近sp带内的各向异性电子 - 电子散射引起的。超表面的双金属特性强烈影响物理过程,耗散主要发生在金中,而热电子产生的量子过程在两个组分中都发生。我们的计算表明,几何形状和材料的选择对于产生强大的超快非热电子组分至关重要。通过等离激元激发产生高能电子对光能量转换和超快纳米光子学具有重要意义。在此,作者发现了由费米表面附近的各向异性电子 - 电子散射引起的非热载流子的三个亚群的证据。