Anand Sindhu, Kumar Swathy Sampath, Muthuswamy Jit
Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, ECG 334, P. O. Box 879709, Tempe, AZ, 85287-9709, USA.
Biomed Microdevices. 2016 Aug;18(4):72. doi: 10.1007/s10544-016-0093-8.
Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time).
新兴的神经假肢需要精确的位置调整以及与单个神经元的稳定接口,以在整个生命周期内实现最佳功能。在本研究中,我们报告了一种自主控制方法,可在无视觉反馈的情况下,在柔软、粘弹性的脑组织中精确导航微尺度电极。这种自主控制可优化粘弹性脑组织中单个神经元记录的信噪比(SNR),同时维持准静态机械应力条件,以提高植入物与组织界面的稳定性。在体内啮齿动物实验中,利用微电极的力-位移曲线来估计大脑的粘弹性参数。通过结合计算模型和实验,我们确定了微电极的最佳运动方式,即前后位移的双向位移比例为3:2,运动间隔为40秒,以尽量减少周围脑组织中的机械应力。与使用传统线性单向微电极运动的调节器(每分钟1.48次运动,23%的时间内信噪比稳定)相比,在体内实验中,采用上述微电极最佳双向运动的调节器可显著减少微电极的运动次数(每分钟0.23次运动),并延长稳定SNR的时间(53%的时间)。