Samadi S, Soltanian-Zadeh H, Jutten C
CIPCE, Electrical and Computer Engineering Department, University of Tehran, Tehran, Iran.
GIPSA-LAB, University of Grenoble Alpes, Domaine universitaire- BP 46, 38402, Grenoble Cedex, France.
Brain Topogr. 2016 Sep;29(5):661-78. doi: 10.1007/s10548-016-0506-2. Epub 2016 Jul 27.
Integration of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is an open problem, which has motivated many researches. The most important challenge in EEG-fMRI integration is the unknown relationship between these two modalities. In this paper, we extract the same features (spatial map of neural activity) from both modality. Therefore, the proposed integration method does not need any assumption about the relationship of EEG and fMRI. We present a source localization method from scalp EEG signal using jointly fMRI analysis results as prior spatial information and source separation for providing temporal courses of sources of interest. The performance of the proposed method is evaluated quantitatively along with multiple sparse priors method and sparse Bayesian learning with the fMRI results as prior information. Localization bias and source distribution index are used to measure the performance of different localization approaches with or without a variety of fMRI-EEG mismatches on simulated realistic data. The method is also applied to experimental data of face perception of 16 subjects. Simulation results show that the proposed method is significantly stable against the noise with low localization bias. Although the existence of an extra region in the fMRI data enlarges localization bias, the proposed method outperforms the other methods. Conversely, a missed region in the fMRI data does not affect the localization bias of the common sources in the EEG-fMRI data. Results on experimental data are congruent with previous studies and produce clusters in the fusiform and occipital face areas (FFA and OFA, respectively). Moreover, it shows high stability in source localization against variations in different subjects.
脑电图(EEG)与功能磁共振成像(fMRI)的整合是一个开放性问题,这激发了许多研究。EEG-fMRI整合中最重要的挑战是这两种模态之间未知的关系。在本文中,我们从这两种模态中提取相同的特征(神经活动的空间图谱)。因此,所提出的整合方法不需要对EEG和fMRI的关系做任何假设。我们提出一种从头皮EEG信号进行源定位的方法,该方法联合使用fMRI分析结果作为先验空间信息,并进行源分离以提供感兴趣源的时间历程。所提方法的性能与多种稀疏先验方法以及以fMRI结果作为先验信息的稀疏贝叶斯学习一起进行了定量评估。定位偏差和源分布指数用于衡量在模拟真实数据上存在或不存在各种fMRI-EEG不匹配情况下不同定位方法的性能。该方法还应用于16名受试者的面部感知实验数据。模拟结果表明,所提方法对噪声具有显著的稳定性,定位偏差较低。尽管fMRI数据中存在额外区域会增大定位偏差,但所提方法优于其他方法。相反,fMRI数据中遗漏一个区域不会影响EEG-fMRI数据中共同源的定位偏差。实验数据结果与先前研究一致,并在梭状回和枕叶面部区域(分别为FFA和OFA)产生了聚类。此外,它在源定位方面对不同受试者的变化表现出高度稳定性。