Chakraborty S, Asare B K, Biswas P K, Rajnarayanan R V
Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174, United States.
Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214, United States.
Biochem Biophys Res Commun. 2016 Sep 9;478(1):116-122. doi: 10.1016/j.bbrc.2016.07.083. Epub 2016 Jul 25.
The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide "I-box" derived from ER residues 503-518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479-485), LQQQHQRLAQ (residues 497-506), and LSHIRHMSNK (residues 511-520) and reported the suitability of using LQQQHQRLAQ (ER 497-506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents.
核转录因子雌激素受体α(ERα)在其同源配体雌激素的作用下,调控多种细胞信号转导事件。70%的乳腺癌中都有ERα表达,它是抗乳腺癌药物研发中广泛验证的靶点。给予抗雌激素药物以阻断雌激素受体激活仍是一种可行的抗乳腺癌治疗方案,但抗雌激素耐药性一直是一个重大瓶颈。雌激素受体的二聚化是ER激活所必需的。因此,阻断ERα二聚化是对抗抗雌激素耐药性的一种补充和替代策略。源自ER第503 - 518位残基的二聚体界面肽“I - box”可特异性阻断ER二聚化。最近,我们通过全面的分子模拟研究了ERα配体结合域(LBDs)在同源二聚体中的相互作用动力学。基于这项研究,我们鉴定出三个界面识别肽基序LDKITDT(ERα第479 - 485位残基)、LQQQHQRLAQ(第497 - 506位残基)和LSHIRHMSNK(第511 - 520位残基),并报道了以LQQQHQRLAQ(ER 497 - 506)为模板设计ERα二聚化抑制剂的适用性。基于肽的治疗药物的稳定性和自聚集性构成了进一步研究的重大瓶颈。在本研究中,利用肽嫁接来保留其药效基团识别基序,并在计算机模拟和体外实验中评估它们的稳定性以及阻断ERα介导活性的潜力。嫁接肽阻断了ERα介导的乳腺癌细胞增殖和活力,但未改变其凋亡命运。我们相信,本研究中确定的结构线索可用于鉴定新型拟肽和小分子,这些分子特异性靶向ER二聚体界面,从而产生新一代抗癌药物。