Yeşiller Nazli, Hanson James L, Kopp Kevin B, Yee Emma H
Global Waste Research Institute, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
Civil and Environmental Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
Waste Manag. 2016 Oct;56:246-54. doi: 10.1016/j.wasman.2016.07.011. Epub 2016 Jul 25.
Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of -48.4 to 72.4MJ/m(3) available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness and feasibility of design, installation, and operation of heat management systems in MSW landfills.
热量是城市固体废弃物填埋的主要副产品。据报道,在世界各地不同运营条件和气候区域的城市固体废弃物填埋场,长期存在温度升高的情况。本文提出了一个城市固体废弃物填埋场热量管理的概念框架。概述了三种主要策略:提取、调节和补充。热量提取可将多余的填埋场热量作为替代能源加以有益利用。针对提取策略提供了两种方法:在填埋场提取高于基线平衡条件的所有多余热量,以及仅提取高于平衡条件的部分多余热量以获得目标最佳废物温度,从而实现最大程度的气体产生。热量调节可控制废物温度,以在填埋场设施达到目标水平的均匀分布。针对调节策略提供了两种方法:在填埋场重新分配多余热量,以获得均匀的目标最佳废物温度,从而实现最大程度的气体产生;以及在填埋场重新分配多余热量,以获得特定的目标温度。热量补充可利用外部热能来控制热量产生,以达到目标废物温度。针对补充策略提供了两种方法:使用外部能源向废物添加热量以提高废物温度,以及使用外部能源冷却废物以降低废物温度。对于所有策略,可利用的填埋场热能是根据废物温度与目标温度之间的差值确定的。使用来自低热产生和高热产生填埋场设施的数据进行的示例分析表明,可用于热量管理的热能范围为 -48.4 至 72.4MJ/m³。需要进一步的建模和实验分析,以验证城市固体废弃物填埋场热量管理系统设计、安装和运行的有效性和可行性。