Suppr超能文献

用于聚类沸石晶体结构的新方法。

Novel Approach for Clustering Zeolite Crystal Structures.

作者信息

Lach-Hab M, Yang S, Vaisman I I, Blaisten-Barojas E

机构信息

Computational Materials Science Center, George Mason University, MSN 6A2, Fairfax, VA 22030, USA phone: 011-703-9931988 fax /011-703-9939330.

Department of Bioinformatics and Computational Biology George Mason University, MSN 5B3, Manassas, VA 20110, USA.

出版信息

Mol Inform. 2010 Apr 12;29(4):297-301. doi: 10.1002/minf.200900072. Epub 2010 Mar 29.

Abstract

Informatics approaches play an increasingly important role in the design of new materials. In this work we apply unsupervised statistical learning for identifying four framework-type attractors of zeolite crystals in which several of the zeolite framework types are grouped together. Zeolites belonging to these super-classes manifest important topological, chemical and physical similarities. The zeolites form clusters located around four core framework types: LTA, FAU, MFI and the combination of EDI, HEU, LTL and LAU. Clustering is performed in a 9-dimensional space of attributes that reflect topological, chemical and physical properties for each individual zeolite crystalline structure. The implemented machine learning approach relies on hierarchical top-down clustering approach and the expectation maximization method. The model is trained and tested on ten partially independent data sets from the FIZ/NIST Inorganic Crystal Structure Database.

摘要

信息学方法在新材料设计中发挥着越来越重要的作用。在这项工作中,我们应用无监督统计学习来识别沸石晶体的四种骨架类型吸引子,其中几种沸石骨架类型被归为一组。属于这些超类别的沸石表现出重要的拓扑、化学和物理相似性。沸石形成围绕四种核心骨架类型的簇:LTA、FAU、MFI以及EDI、HEU、LTL和LAU的组合。聚类是在一个9维属性空间中进行的,该空间反映了每个沸石晶体结构的拓扑、化学和物理性质。所实施的机器学习方法依赖于分层自上而下的聚类方法和期望最大化方法。该模型在来自FIZ/NIST无机晶体结构数据库的十个部分独立的数据集中进行训练和测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验