State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Acc Chem Res. 2010 Sep 21;43(9):1195-204. doi: 10.1021/ar900293m.
Since the first synthesis of zeolites in 1940s, these materials and related inorganic open-framework materials with regular nanoporous space have attracted considerable interest. Zeolites are important for catalysis, adsorption, and ion-exchange, and researchers are finding new applications for these materials in optics, electronics, sensors, and medicine. In particular, the petrochemical industry is interested in the synthesis of new zeolite catalysts with high catalytic activity and selectivity. Using hydrothermal, solvothermal, and the recently-developed ionothermal methods, researchers have prepared 194 types of zeolites and thousands of zeolite-related inorganic open-framework materials. However, their syntheses are based primarily on an empirical "trial-and-error" method. The rational synthesis of zeolitic inorganic open-framework materials, while targeting novel structures and functions, remains a formidable task. The challenge in rational synthesis lies in the unknown mechanism for their formation: the relationship between the synthetic parameters and structural characteristics of the products is not clear. In an effort to overcome these challenges, our group has built up a ZEOBANK, a database of zeolite structures and a database for their synthesis. ZEOBANK allows us to use data mining to find new methods for guiding the synthesis of zeolitic materials. In this Account, we describe our efforts to rationally synthesize zeolitic inorganic open-framework materials with desired structures and present computational methods for the design of these structures. In particular, we focus on the design of zeolites with desired pore geometries through constrained assembly of atoms around the predefined channels in the unit cell. Our approaches toward rational synthesis include the use of template to direct the structure, the use of heteroatoms as a framework substituent, and the use of computational data mining. Employing these strategies, we have developed innovative methods toward the synthesis of target structures with specific channel structures, such as extra-large pores and chiral channels. We expect that further data mining will increase the synthetic control for researchers interested in designing functional zeolitic materials.
自 20 世纪 40 年代首次合成沸石以来,这些具有规则纳米多孔空间的材料和相关的无机骨架材料引起了相当大的兴趣。沸石在催化、吸附和离子交换方面具有重要作用,研究人员正在为这些材料在光学、电子、传感器和医学领域寻找新的应用。特别是,石化行业对具有高催化活性和选择性的新型沸石催化剂的合成感兴趣。研究人员利用水热法、溶剂热法和最近开发的离子热法,已经制备了 194 种沸石和数千种沸石相关的无机骨架材料。然而,它们的合成主要基于经验的“试错”方法。沸石无机骨架材料的合理合成,在针对新颖结构和功能的同时,仍然是一项艰巨的任务。合理合成的挑战在于形成机制未知:合成参数与产物结构特征之间的关系尚不清楚。为了克服这些挑战,我们的研究小组建立了一个沸石库(ZEOBANK),这是一个沸石结构数据库和一个用于其合成的数据库。ZEOBANK 使我们能够使用数据挖掘来寻找指导沸石材料合成的新方法。在本报告中,我们描述了我们为合理合成具有所需结构的沸石无机骨架材料所做的努力,并介绍了设计这些结构的计算方法。特别是,我们专注于通过在单元晶胞中的预定通道周围约束原子组装来设计具有所需孔几何形状的沸石。我们的合理合成方法包括使用模板来指导结构、使用杂原子作为骨架取代基以及使用计算数据挖掘。通过采用这些策略,我们开发了具有特定通道结构的目标结构的创新合成方法,例如超大孔和手性通道。我们预计,进一步的数据挖掘将增加对设计功能沸石材料感兴趣的研究人员的合成控制。