Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China.
Science. 2016 Jul 22;353(6297):364-7. doi: 10.1126/science.aaf4362.
Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.
二维(2D)材料在最大限度增强的情况下,可以独特地跨越周围复合材料基质的物理尺寸。然而,在高体积分数下连续 2D 组件的对齐和组装仍然具有挑战性。我们使用堆叠和折叠的方法生成对齐的石墨烯/聚碳酸酯复合材料,其多达 320 个平行层的厚度为 0.032 至 0.11 毫米,在极低的体积分数(仅 0.082%)下,显著提高了有效弹性模量和强度。类似的横向剪切滚动方法生成了阿基米德螺旋纤维,其断裂伸长率达到了 110%的奇异伸缩,是凯夫拉的 30 倍。这两种复合材料都保持了沿石墨烯平面轴的各向异性电导率和透明度。这些复合材料有望在极高的体积分数下实现大幅增强的机械性能、电性能和光学性能。