Yang Daquan, Wang Chuan, Ji Yuefeng
Opt Express. 2016 Jul 25;24(15):16267-79. doi: 10.1364/OE.24.016267.
We propose a novel multiplexed ultra-compact high-sensitivity one-dimensional (1D) photonic crystal (PC) nanobeam cavity sensor array on a monolithic silicon chip, referred to as Parallel Integrated 1D PC Nanobeam Cavity Sensor Array (PI-1DPC-NCSA). The performance of the device is investigated numerically with three-dimensional finite-difference time-domain (3D-FDTD) technique. The PI-1DPC-NCSA consists of multiple parallel-connected channels of integrated 1D PC nanobeam cavities/waveguides with gap separations. On each channel, by connecting two additional 1D PC nanobeam bandstop filters (1DPC-NBFs) to a 1D PC nanobeam cavity sensor (1DPC-NCS) in series, a transmission spectrum with a single targeted resonance is achieved for the purpose of multiplexed sensing applications. While the other spurious resonances are filtered out by the stop-band of 1DPC-NBF, multiple 1DPC-NCSs at different resonances can be connected in parallel without spectrum overlap. Furthermore, in order for all 1DPC-NCSs to be integrated into microarrays and to be interrogated simultaneously with a single input/output port, all channels are then connected in parallel by using a 1 × n taper-type equal power splitter and a n × 1 S-type power combiner in the input port and output port, respectively (n is the channel number). The concept model of PI-1DPC-NCSA is displayed with a 3-parallel-channel 1DPC-NCSs array containing series-connected 1DPC-NBFs. The bulk refractive index sensitivities as high as 112.6nm/RIU, 121.7nm/RIU, and 148.5nm/RIU are obtained (RIU = Refractive Index Unit). In particular, the footprint of the 3-parallel-channel PI-1DPC-NCSA is 4.5μm × 50μm (width × length), decreased by more than three orders of magnitude compared to 2D PC integrated sensor arrays. Thus, this is a promising platform for realizing ultra-compact lab-on-a-chip applications with high integration density and high parallel-multiplexing capabilities.
我们提出了一种新颖的、集成在单片硅芯片上的多路复用超紧凑高灵敏度一维(1D)光子晶体(PC)纳米光束腔传感器阵列,称为并行集成一维PC纳米光束腔传感器阵列(PI-1DPC-NCSA)。采用三维时域有限差分(3D-FDTD)技术对该器件的性能进行了数值研究。PI-1DPC-NCSA由多个带有间隙间隔的集成一维PC纳米光束腔/波导的并联通道组成。在每个通道上,通过将两个额外的一维PC纳米光束带阻滤波器(1DPC-NBF)串联连接到一个一维PC纳米光束腔传感器(1DPC-NCS),实现了具有单个目标共振的透射光谱,用于多路复用传感应用。而其他杂散共振则被1DPC-NBF的阻带滤除,不同共振频率下的多个1DPC-NCS可以并联连接而不会出现光谱重叠。此外,为了将所有1DPC-NCS集成到微阵列中并通过单个输入/输出端口同时进行检测,所有通道在输入端口和输出端口分别通过一个1×n锥形等功率分配器和一个n×1 S型功率合成器并联连接(n为通道数)。PI-1DPC-NCSA的概念模型以一个包含串联连接的1DPC-NBF的3通道一维PC-NCS阵列展示。获得了高达112.6nm/RIU、121.7nm/RIU和148.5nm/RIU的体折射率灵敏度(RIU = 折射率单位)。特别是,3通道PI-1DPC-NCSA的占地面积为4.5μm×50μm(宽度×长度),与二维PC集成传感器阵列相比减小了三个多数量级。因此,这是一个用于实现具有高集成密度和高并行多路复用能力的超紧凑片上实验室应用的有前景的平台。