Suppr超能文献

应用逻辑回归、判别分析和决策树预测重症手足口病的实验室参数及比较

Application and Comparison of Laboratory Parameters for Forecasting Severe Hand-Foot-Mouth Disease Using Logistic Regression, Discriminant Analysis and Decision Tree.

作者信息

Sui Meili, Huang Xueyong, Li Yi, Ma Xiaomei, Zhang Chao, Li Xingle, Chen Zhijuan, Feng Huifen, Ren Jingchao, Wang Fang, Xu Bianli, Duan Guangcai

出版信息

Clin Lab. 2016;62(6):1023-31. doi: 10.7754/clin.lab.2015.150917.

Abstract

BACKGROUND

In recent years, the prevalence of hand-foot-mouth disease (HFMD) in China and some other countries has caused worldwide concern. Mild cases tend to recover within a week, while severe cases may progress rapidly and tend to have bad outcome. Since there is no vaccine for HFMD and anti-inflammatory treatment is not ideal. In this study, we aimed to establish a valid forecasting model for severe HFMD using common laboratory parameters.

METHODS

Retrospectively, 77 severe HFMD cases from Zhengzhou Children's hospital in the peaking period between years 2013 to 2015 were collected, with 77 mild HFMD cases in the same area. The study recorded common laboratory parameters to assist in establishment of the severe HFMD model. After screening the important variables using Mann-Whitney U test, the study also matched the logistic regression (LR), discriminant analysis (DA), and decision tree (DT) to make a comparison.

RESULTS

Compared with that of the mild group, serum levels of WBC, PLT, PCT, MCV, MCH, LCR, SCR, LCC, GLO, CK-MB, K, S100, and B in the severe group were higher (p < 0.05), while MCR, EOR, BASOR, SCC, MCC, EO, BASO, NA, CL, T, Th, and Th/Ts were lower (p < 0.05). Five indicators including MCR, LCC, Th, CK-MB, and CL were screened out by LR and the same for DA, and five variables including EO, LCC, CL, GLO, and MCC screened out by DT. The area under the curve (AUC) of LR, DA, and DT was 0.805, 0.779 and 0.864, respectively.

CONCLUSIONS

The findings were that common laboratory indexes were effectively used to distinguish the mild HFMD cases and severe HFMD cases by LR, DA, and DT, and DT had the best classification effect with an AUC of 0.864.

摘要

背景

近年来,中国及其他一些国家手足口病(HFMD)的流行引起了全球关注。轻症病例往往在一周内康复,而重症病例可能进展迅速且预后往往较差。由于手足口病没有疫苗,抗炎治疗也不理想。在本研究中,我们旨在使用常见实验室参数建立一个有效的重症手足口病预测模型。

方法

回顾性收集2013年至2015年高峰期郑州儿童医院77例重症手足口病病例以及同一地区77例轻症手足口病病例。该研究记录常见实验室参数以协助建立重症手足口病模型。在使用曼-惠特尼U检验筛选重要变量后,该研究还对比了逻辑回归(LR)、判别分析(DA)和决策树(DT)。

结果

与轻症组相比,重症组血清白细胞(WBC)、血小板(PLT)、降钙素原(PCT)、平均红细胞体积(MCV)、平均红细胞血红蛋白含量(MCH)、淋巴细胞百分比(LCR)、血清肌酐(SCR)、淋巴细胞计数(LCC)、球蛋白(GLO)、肌酸激酶同工酶(CK-MB)、钾(K)、S100、B水平更高(p < 0.05),而单核细胞比率(MCR)、嗜酸粒细胞比率(EOR)、嗜碱粒细胞比率(BASOR)、鳞状细胞计数(SCC)、单核细胞计数(MCC)、嗜酸粒细胞(EO)、嗜碱粒细胞(BASO)、钠(NA)、氯(CL)、总T细胞(T)、辅助性T细胞(Th)、Th/Ts更低(p < 0.05)。通过逻辑回归筛选出包括MCR、LCC、Th、CK-MB和CL在内的5项指标,判别分析筛选出的指标相同,决策树筛选出包括EO、LCC、CL、GLO和MCC在内的5个变量。逻辑回归、判别分析和决策树的曲线下面积(AUC)分别为0.805、0.779和0.864。

结论

研究结果表明,常见实验室指标可通过逻辑回归、判别分析和决策树有效区分轻症手足口病病例和重症手足口病病例,决策树分类效果最佳,AUC为0.864。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验