Perisic Matic Ljubica, Rykaczewska Urszula, Razuvaev Anton, Sabater-Lleal Maria, Lengquist Mariette, Miller Clint L, Ericsson Ida, Röhl Samuel, Kronqvist Malin, Aldi Silvia, Magné Joelle, Paloschi Valentina, Vesterlund Mattias, Li Yuhuang, Jin Hong, Diez Maria Gonzalez, Roy Joy, Baldassarre Damiano, Veglia Fabrizio, Humphries Steve E, de Faire Ulf, Tremoli Elena, Odeberg Jacob, Vukojević Vladana, Lehtiö Janne, Maegdefessel Lars, Ehrenborg Ewa, Paulsson-Berne Gabrielle, Hansson Göran K, Lindeman Jan H N, Eriksson Per, Quertermous Thomas, Hamsten Anders, Hedin Ulf
From the Departments of Molecular Medicine and Surgery (L.P.M., U.R., A.R., M.L., I.E., S.R., M.K., S.A., J.R., U.H.), Medicine (M.S.-L., J.M., V.P., Y.L., H.J., M.G.D., L.M., E.E., G.P.-B., G.K.H., P.E., A.H.), Division of Cardiovascular Epidemiology, Institute of Environmental Medicine (U.d.F.), and Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Solna, Sweden; Division of Vascular Surgery, Stanford University, CA (C.L.M., T.Q.); Science for Life Laboratory, Solna, Sweden (M.V., J.L.); Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy (D.B., E.T.); Dipartimento di Scienze Cliniche e di Comunità, Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.); British Heart Foundation Laboratories, Department of Medicine, University College of London, United Kingdom (S.E.H.); Department of Cardiology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden (U.d.F.); Science for Life Laboratory, Department of Proteomics, Stockholm, Sweden (J.O.); and Department of Vascular Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.).
Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1947-61. doi: 10.1161/ATVBAHA.116.307893. Epub 2016 Jul 28.
Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability.
Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation.
We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.
动脉粥样硬化中关键的增强过程已被确定,而对下调途径的了解较少。在此,我们应用系统生物学方法来研究受抑制的分子特征,假设它们可能为有助于斑块稳定性的机制提供见解。
在人类颈动脉斑块(n = 177)与健康动脉(n = 15)的微阵列中,肌肉收缩、肌肉发育和肌动蛋白细胞骨架是下调最显著的途径(错误发现率分别为6.99e - 21、1.66e - 6、2.54e - 10)。除了典型的平滑肌细胞(SMC)标志物外,这些途径还包括先前与动脉粥样硬化无关的细胞骨架相关基因。SYNPO2、SYNM、LMOD1、PDLIM7和PLN的表达与斑块中典型的SMC标志物呈正相关(Pearson相关系数r>0.6,P<0.0001),在大鼠内膜增生中也呈正相关(r>0.8,P<0.0001)。通过免疫组织化学,这些蛋白在正常血管的SMC中表达,但在人类斑块和内膜增生中基本不存在。在亚细胞水平上,大多数蛋白定位于培养的SMC中的细胞骨架,并通过染色质免疫沉淀测序受活性增强子组蛋白修饰H3K27ac调控。在功能上,这些基因受到血小板衍生生长因子β(PDGFB)、干扰素γ(IFNg)、剪切流应力暴露和氧化型低密度脂蛋白(oxLDL)负载的下调。PDLIM7、PLN和SYNPO2基因座中的遗传变异与无症状心血管疾病高危受试者(n = 3378)的颈动脉内膜中层厚度进展相关。通过表达数量性状位点(eQTL)分析,rs11746443也与斑块中PDLIM7的表达相关。从机制上讲,体外沉默PDLIM7会导致SMC标志物下调、肌动蛋白细胞骨架破坏、细胞铺展减少和增殖增加。
我们鉴定出一组基因,它们反映了血管疾病中SMC表型的改变,可能是SMC去分化的早期敏感标志物。