Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
ACS Nano. 2016 Aug 23;10(8):7830-9. doi: 10.1021/acsnano.6b03496. Epub 2016 Aug 8.
Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.
胶体钙钛矿纳米板是一类很有前途的半导体纳米材料,具有明亮的发光特性、可调谐且光谱较窄的吸收和发射特性、强受限激子态以及易于进行胶体合成等特点。在这里,我们通过改变阳离子、金属和卤化物的组成以及纳米板的厚度,展示了实现高光谱可调性的程度。我们合成了形式为 L2[ABX3]n-1BX4 的纳米板,其中 L 是一种有机配体(辛基铵、丁基铵),A 是单价金属或有机分子阳离子(铯、甲铵、甲脒),B 是二价金属阳离子(铅、锡),X 是卤化物阴离子(氯、溴、碘),n-1 是厚度的单元晶胞数。我们表明,n、B 和 X 的变化导致吸收和发射能量发生很大变化,而 A 阳离子的变化仅导致细微变化,但会显著影响纳米板的稳定性和光致发光量子产率(超过 20%)。此外,混合卤化物纳米板在 1.5 eV 的光谱范围内表现出连续的光谱可调性,从 2.2 到 3.7 eV。纳米板具有相对较大的横向尺寸(100nm 到 1μm),这促进了自组装成堆叠超晶格结构,其周期性可以根据纳米板表面配体长度进行调整。这些结果表明胶体钙钛矿纳米板作为一种材料平台具有多功能性,可调谐范围从深紫外延伸到可见光,再到近红外。特别是,含锡纳米板是不含铅和镉的胶体半导体这一不断扩大的重要家族中的一个重要补充。