Suppr超能文献

辅料性质的定量构效关系建模及其对制剂性质预测的研究

Quantitative structure property relationship modeling of excipient properties for prediction of formulation characteristics.

机构信息

Department of Pharmaceutics, P.E. Society's Modern College of Pharmacy, Nigdi, Pune 411044, Maharashtra, India.

Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, Maharashtra, India.

出版信息

Carbohydr Polym. 2016 Oct 20;151:593-599. doi: 10.1016/j.carbpol.2016.05.114. Epub 2016 Jun 2.

Abstract

Quantitative structure property relationship (QSPR) is used to relate the excipient descriptors with the formulation properties. A QSPR model is developed by regression analysis of selected descriptors contributing towards the targeted formulation properties. Developed QSPR model is validated by the true external method where it showed good accuracy and precision in predicting the formulation composition as experimental t90% (61.35min) is observed very close to predicted t90% (67.37min). Hence, QSPR approach saves resources by predicting drug release from an unformulated formulation; avoiding repetitive trials in the development of a new formulation and/or optimization of existing one.

摘要

定量构效关系(QSPR)用于将赋形剂描述符与制剂性质相关联。通过对有助于目标制剂性质的选定描述符进行回归分析,建立 QSPR 模型。通过真实外部方法验证所开发的 QSPR 模型,该方法在预测制剂组成方面表现出良好的准确性和精密度,实验 t90%(61.35 分钟)非常接近预测 t90%(67.37 分钟)。因此,QSPR 方法通过预测未成型制剂的药物释放来节省资源;避免在开发新制剂和/或优化现有制剂时进行重复试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验