Suppr超能文献

药物代谢、药物反应及药物相互作用中的核受体

Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions.

作者信息

Prakash Chandra, Zuniga Baltazar, Song Chung Seog, Jiang Shoulei, Cropper Jodie, Park Sulgi, Chatterjee Bandana

机构信息

Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245; William Carey University College of Osteopathic Medicine, 498 Tucsan Ave, Hattiesburg, Mississipi 39401.

Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245; University of Texas at Austin, 2100 Comal Street, Austin, Texas 78712.

出版信息

Nucl Receptor Res. 2015;2. doi: 10.11131/2015/101178.

Abstract

Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1, 25-dihydroxy vitamin D-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-, FXR, LXR- play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.

摘要

口服小分子治疗药物在肝脏和肠道中由I相和II相药物代谢酶(DME)进行代谢,转运蛋白则协调药物内流(0期)和药物/药物代谢物外流(III期)。参与药物代谢和处置的基因由异源生物激活的核受体(NR)诱导,即孕烷X受体(PXR)和组成型雄甾烷受体(CAR),以及由1,25 - 二羟基维生素D激活的维生素D受体(VDR),这是由于0 - III期基因中存在的异源生物反应元件(XRE)的反式激活。其他NR,如肝细胞核因子4(HNF4)、法尼醇X受体(FXR)、肝X受体(LXR)在某些情况下,如与胆固醇和胆汁酸代谢相关的情况下,在药物代谢中发挥重要作用。I相酶细胞色素P450 3A4/3A5(CYP3A4/A5)、细胞色素P450 2D6(CYP2D6)、细胞色素P450 2B6(CYP2B6)、细胞色素P450 2C9(CYP2C9)、细胞色素P450 2C19(CYP2C19)、细胞色素P450 1A2(CYP1A2)、细胞色素P450 2C8(CYP2C8)、细胞色素P450 2A6(CYP2A6)、细胞色素P450 2J2(CYP2J2)和细胞色素P450 2E1代谢所有处方药的90%以上,亲水性官能团的II相结合(有/无I相修饰)促进药物清除。结合步骤由广泛特异性转移酶介导,如尿苷二磷酸葡萄糖醛酸基转移酶(UGT)、磺基转移酶(SULT)、谷胱甘肽S - 转移酶(GST)。本综述深入探讨了我们目前对PXR/CAR/VDR介导的DME和转运蛋白表达调控的理解,以及单核苷酸多态性(SNP)和表观基因组(由启动子甲基化、组蛋白修饰、微小RNA、长链非编码RNA指定)对PXR/CAR/VDR和0 - III期介质表达的影响,以及它们对药物反应变异性的影响。还讨论了靶向表观遗传调控的治疗药物以及药物 - 药物/药物 - 食物/药物 - 草药相互作用的分子基础和后果(用药过量、用药不足或有益结果)。精准医学需要了解药物对DME和转运蛋白活性的影响以及它们由NR调控的表达,以实现最佳药物疗效而无药物不良反应。在未来的药物筛选中,诸如人源化小鼠模型和微流控芯片器官等新工具,它们模拟多细胞环境的生理学,可能会取代当前基于细胞的工作流程。

相似文献

1
Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions.
Nucl Receptor Res. 2015;2. doi: 10.11131/2015/101178.
2
Induction of phase I, II and III drug metabolism/transport by xenobiotics.
Arch Pharm Res. 2005 Mar;28(3):249-68. doi: 10.1007/BF02977789.
4
Xenobiotic receptors in mediating the effect of sepsis on drug metabolism.
Acta Pharm Sin B. 2020 Jan;10(1):33-41. doi: 10.1016/j.apsb.2019.12.003. Epub 2019 Dec 16.
5
Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes.
Curr Drug Metab. 2002 Oct;3(5):481-90. doi: 10.2174/1389200023337171.
8
Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR.
Adv Drug Deliv Rev. 2010 Oct 30;62(13):1238-49. doi: 10.1016/j.addr.2010.08.006. Epub 2010 Aug 17.
10
Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes.
Clin Pharmacokinet. 2003;42(15):1331-57. doi: 10.2165/00003088-200342150-00003.

引用本文的文献

4
Metabolism-involved drug interactions with traditional Chinese medicines in cardiovascular diseases.
J Food Drug Anal. 2022 Sep 15;30(3):331-356. doi: 10.38212/2224-6614.3421.
5
Hypertensive Nephropathy Changes the Expression of Drug-Metabolizing Enzymes and Transporters in Spontaneously Hypertensive Rat Liver and Kidney.
Eur J Drug Metab Pharmacokinet. 2025 Jan;50(1):39-51. doi: 10.1007/s13318-024-00923-2. Epub 2024 Nov 10.
8
Bile Acids Promote Hepatic Biotransformation and Excretion of Aflatoxin B1 in Broiler Chickens.
Toxins (Basel). 2023 Dec 9;15(12):694. doi: 10.3390/toxins15120694.
9
Comprehensive in vitro analysis evaluating the variable drug-drug interaction risk of rifampicin compared to rifabutin.
Arch Toxicol. 2023 Aug;97(8):2219-2230. doi: 10.1007/s00204-023-03531-2. Epub 2023 Jun 7.
10
Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming.
Front Pharmacol. 2023 Mar 2;14:1115226. doi: 10.3389/fphar.2023.1115226. eCollection 2023.

本文引用的文献

1
Noncoding microRNAs: small RNAs play a big role in regulation of ADME?
Acta Pharm Sin B. 2012 Apr;2(2):93-101. doi: 10.1016/j.apsb.2012.02.011. Epub 2012 Mar 31.
3
'Organs-on-chips' go mainstream.
Nature. 2015 Jul 16;523(7560):266. doi: 10.1038/523266a.
4
Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort.
Int J Epidemiol. 2015 Aug;44(4):1199-210. doi: 10.1093/ije/dyv028. Epub 2015 Apr 14.
5
A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice.
Cell Metab. 2015 Mar 3;21(3):455-67. doi: 10.1016/j.cmet.2015.02.004.
6
HDAC inhibitor-induced drug resistance involving ATP-binding cassette transporters (Review).
Oncol Lett. 2015 Feb;9(2):515-521. doi: 10.3892/ol.2014.2714. Epub 2014 Nov 19.
7
A long noncoding RNA connects c-Myc to tumor metabolism.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18697-702. doi: 10.1073/pnas.1415669112. Epub 2014 Dec 15.
8
What do drug transporters really do?
Nat Rev Drug Discov. 2015 Jan;14(1):29-44. doi: 10.1038/nrd4461. Epub 2014 Dec 5.
9
Genome-wide discovery of drug-dependent human liver regulatory elements.
PLoS Genet. 2014 Oct 2;10(10):e1004648. doi: 10.1371/journal.pgen.1004648. eCollection 2014 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验