Department of Chemistry, Stanford University , Stanford, California 94305, United States.
Department of Developmental Biology, Stanford University School of Medicine , Stanford, California 94305, United States.
J Am Chem Soc. 2016 Aug 24;138(33):10398-401. doi: 10.1021/jacs.6b05943. Epub 2016 Aug 10.
The rapid development in fluorescence microscopy and imaging techniques has greatly benefited our understanding of the mechanisms governing cellular processes at the molecular level. In particular, super-resolution microscopy methods overcome the diffraction limit to observe nanoscale cellular structures with unprecedented detail, and single-molecule tracking provides precise dynamic information about the motions of labeled proteins and oligonucleotides. Enhanced photostability of fluorescent labels (i.e., maximum emitted photons before photobleaching) is a critical requirement for achieving the ultimate spatio-temporal resolution with either method. While super-resolution imaging has greatly benefited from highly photostable fluorophores, a shortage of photostable fluorescent labels for bacteria has limited its use in these small but relevant organisms. In this study, we report the use of a highly photostable fluoromodule, dL5, to genetically label proteins in the Gram-negative bacterium Caulobacter crescentus, enabling long-time-scale protein tracking and super-resolution microscopy. dL5 imaging relies on the activation of the fluorogen Malachite Green (MG) and can be used to label proteins sparsely, enabling single-protein detection in live bacteria without initial bleaching steps. dL5-MG complexes emit 2-fold more photons before photobleaching compared to organic dyes such as Cy5 and Alexa 647 in vitro, and 5-fold more photons compared to eYFP in vivo. We imaged fusions of dL5 to three different proteins in live Caulobacter cells using stimulated emission depletion microscopy, yielding a 4-fold resolution enhancement compared to diffraction-limited imaging. Importantly, dL5 fusions to an intermediate filament protein CreS are significantly less perturbative compared to traditional fluorescent protein fusions. To the best of our knowledge, this is the first demonstration of the use of fluorogen activating proteins for super-resolution imaging in live bacterial cells.
荧光显微镜和成像技术的快速发展极大地促进了我们对分子水平上细胞过程的机制的理解。特别是,超分辨率显微镜方法克服了衍射极限,能够以前所未有的细节观察纳米级细胞结构,而单分子跟踪则提供了标记蛋白和寡核苷酸运动的精确动态信息。荧光标记物的光稳定性增强(即在光漂白之前发射的最大光子数)对于通过这两种方法实现最终的时空分辨率是至关重要的。虽然超分辨率成像极大地受益于高稳定性荧光团,但缺乏适用于这些小型但相关生物体的高稳定性荧光标记物限制了其在这些生物体中的应用。在本研究中,我们报告了使用高度稳定的荧光团 dL5 在革兰氏阴性菌新月柄杆菌中对蛋白质进行基因标记,从而实现了长时间尺度的蛋白质跟踪和超分辨率显微镜。dL5 成像依赖于荧光原素孔雀石绿(MG)的激活,并且可以稀疏地标记蛋白质,从而可以在活细菌中进行单个蛋白质的检测,而无需初始漂白步骤。与体外的有机染料 Cy5 和 Alexa 647 相比,dL5-MG 复合物在光漂白之前发射的光子数多 2 倍,与体内的 eYFP 相比,发射的光子数多 5 倍。我们使用受激发射损耗显微镜对活新月柄杆菌细胞中的三种不同蛋白质的 dL5 融合体进行了成像,与衍射极限成像相比,分辨率提高了 4 倍。重要的是,与传统荧光蛋白融合相比,dL5 与中间丝蛋白 CreS 的融合的扰动要小得多。据我们所知,这是首次在活细菌细胞中使用荧光原激活蛋白进行超分辨率成像的演示。