Kreplak Laurent
Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada.
Curr Protoc Protein Sci. 2016 Aug 1;85:17.7.1-17.7.21. doi: 10.1002/cpps.14.
The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.
原子力显微镜(AFM)具有独特的能力,能够在缓冲溶液中,在从毫秒到小时的广泛时间尺度上,以分子分辨率对生物样品进行成像。除了提供具有纳米到埃尺度分辨率的表面形貌图像外,还可以从纳米尺度到微米尺度研究单个分子之间的力以及生物样品的机械性能。重要的是,测量是在缓冲溶液中进行的,这使得生物样品能够在类似生理的环境中“保持存活”,同时测量结构的时间变化,例如添加化学试剂前后。这些特性使AFM区别于具有可比分辨率的传统成像技术,例如电子显微镜(EM)。本单元介绍了AFM在生物系统上的应用,并描述了AFM在蛋白质、细胞和组织上的具体实例。还介绍了该技术的物理原理及其实际应用和使用的方法学方面。© 2016约翰威立父子公司。