Suppr超能文献

通过精细调控结晶度和溶剂退火协同效应实现高性能全聚合物太阳能电池。

High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing.

机构信息

Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Göteborg, Sweden.

Division of Chemical Physics, Lund University , Box 124, 221 00 Lund, Sweden.

出版信息

J Am Chem Soc. 2016 Aug 31;138(34):10935-44. doi: 10.1021/jacs.6b04822. Epub 2016 Aug 19.

Abstract

Growing interests have been devoted to the design of polymer acceptors as potential replacement for fullerene derivatives for high-performance all polymer solar cells (all-PSCs). One key factor that is limiting the efficiency of all-PSCs is the low fill factor (FF) (normally <0.65), which is strongly correlated with the mobility and film morphology of polymer:polymer blends. In this work, we find a facile method to modulate the crystallinity of the well-known naphthalene diimide (NDI) based polymer N2200, by replacing a certain amount of bithiophene (2T) units in the N2200 backbone by single thiophene (T) units and synthesizing a series of random polymers PNDI-Tx, where x is the percentage of the single T. The acceptor PNDI-T10 is properly miscible with the low band gap donor polymer PTB7-Th, and the nanostructured blend promotes efficient exciton dissociation and charge transport. Solvent annealing (SA) enables higher hole and electron mobilities, and further suppresses the bimolecular recombination. As expected, the PTB7-Th:PNDI-T10 solar cells attain a high PCE of 7.6%, which is a 2-fold increase compared to that of PTB7-Th:N2200 solar cells. The FF of 0.71 reaches the highest value among all-PSCs to date. Our work demonstrates a rational design for fine-tuned crystallinity of polymer acceptors, and reveals the high potential of all-PSCs through structure and morphology engineering of semicrystalline polymer:polymer blends.

摘要

人们对于聚合物受体的设计越来越感兴趣,因为聚合物受体有望替代富勒烯衍生物,用于制备高性能全聚合物太阳能电池(all-PSCs)。限制全聚合物太阳能电池效率的一个关键因素是低填充因子(FF)(通常<0.65),这与聚合物:聚合物共混物的迁移率和薄膜形态密切相关。在这项工作中,我们发现了一种通过在 N2200 主链中用单噻吩(T)单元取代一定量的并二噻吩(2T)单元,并合成一系列随机聚合物 PNDI-Tx(其中 x 是单 T 的百分比)来调节熟知的萘二酰亚胺(NDI)基聚合物 N2200 结晶度的简便方法。受体 PNDI-T10 与低带隙给体聚合物 PTB7-Th 具有良好的混溶性,纳米结构共混物促进了激子的有效解离和电荷输运。溶剂退火(SA)可提高空穴和电子迁移率,并进一步抑制双分子复合。不出所料,PTB7-Th:PNDI-T10 太阳能电池获得了 7.6%的高光电转换效率(PCE),这比 PTB7-Th:N2200 太阳能电池提高了 2 倍。FF 达到 0.71,是迄今为止所有聚合物太阳能电池中最高的值。我们的工作证明了通过精细调节聚合物受体的结晶度,可以合理设计聚合物受体,通过半结晶聚合物:聚合物共混物的结构和形态工程,揭示了全聚合物太阳能电池的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验