Moezzi Bahar, Iannella Nicolangelo, McDonnell Mark D
Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, Australia.
School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
J Comput Neurosci. 2016 Oct;41(2):193-206. doi: 10.1007/s10827-016-0613-9. Epub 2016 Aug 2.
Neural spike trains are commonly characterized as a Poisson point process. However, the Poisson assumption is a poor model for spiking in auditory nerve fibres because it is known that interspike intervals display positive correlation over long time scales and negative correlation over shorter time scales. We have therefore developed a biophysical model based on the well-known Meddis model of the peripheral auditory system, to produce simulated auditory nerve fibre spiking statistics that more closely match the firing correlations observed in empirical data. We achieve this by introducing biophysically realistic ion channel noise to an inner hair cell membrane potential model that includes fractal fast potassium channels and deterministic slow potassium channels. We succeed in producing simulated spike train statistics that match empirically observed firing correlations. Our model thus replicates macro-scale stochastic spiking statistics in the auditory nerve fibres due to modeling stochasticity at the micro-scale of potassium channels.
神经脉冲序列通常被表征为泊松点过程。然而,泊松假设对于听神经纤维的放电来说是一个糟糕的模型,因为众所周知,脉冲间隔在长时间尺度上呈现正相关,而在较短时间尺度上呈现负相关。因此,我们基于著名的外周听觉系统Meddis模型开发了一个生物物理模型,以产生模拟的听神经纤维放电统计数据,使其更紧密地匹配在经验数据中观察到的放电相关性。我们通过将具有生物物理现实性的离子通道噪声引入到一个内毛细胞膜电位模型中来实现这一点,该模型包括分形快速钾通道和确定性慢钾通道。我们成功地产生了与经验观察到的放电相关性相匹配的模拟脉冲序列统计数据。因此,我们的模型通过在钾通道的微观尺度上对随机性进行建模,复制了听神经纤维中的宏观尺度随机放电统计数据。