Rodríguez-Ropero Francisco, Rötzscher Philipp, van der Vegt Nico F A
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany.
J Phys Chem B. 2016 Sep 1;120(34):8757-67. doi: 10.1021/acs.jpcb.6b04100. Epub 2016 Aug 15.
Trimethylamine N-oxide (TMAO) is a protective osmolyte able to preserve protein folded states in the presence of denaturants like urea and under extreme thermodynamic conditions of high pressure and temperature. The current understanding posits that TMAO exerts its stabilizing effect on proteins by preferential exclusion from the macromolecular hydration shell. Additionally, TMAO is also known to favor the folding of hydrophobic polymers. In this latter case, theoretical and experimental studies support a scenario in which TMAO directly interacts with the macromolecule. While atomistic simulations may potentially elucidate the precise TMAO-induced stabilization mechanism, the comparative accuracy of the different TMAO force field models available in the literature remains elusive. Herein, we compare four different TMAO models, study their structural hydration properties, and validate the models against experimental osmotic coefficients and air-water surface tension data over a broad range of TMAO concentrations. The models were furthermore applied to study the effect of TMAO on the folding equilibrium of a generic hydrophobic polymer in aqueous solution. Interestingly, we find that TMAO increasingly stabilizes the compact globular state of the polymer up to approximately 1 M TMAO, while in turn destabilizing it with further increase in TMAO concentration. Hence, TMAO acts as a stabilizing osmolyte or as a denaturant depending on the TMAO concentration of the solution. TMAO-induced stabilization up to 1 M is accompanied by positive preferential TMAO binding and with an increase in the chain configurational entropy, which is reduced at concentrations higher than 1 M. These results are qualitatively independent of the TMAO force field.
氧化三甲胺(TMAO)是一种保护性渗透溶质,在存在尿素等变性剂的情况下以及在高压和高温等极端热力学条件下,能够保持蛋白质的折叠状态。目前的认识认为,TMAO通过优先从大分子水合壳层中排除来对蛋白质发挥稳定作用。此外,还已知TMAO有利于疏水性聚合物的折叠。在后一种情况下,理论和实验研究支持TMAO直接与大分子相互作用的情景。虽然原子模拟可能潜在地阐明TMAO诱导的精确稳定机制,但文献中可用的不同TMAO力场模型的比较准确性仍然难以捉摸。在此,我们比较了四种不同的TMAO模型,研究了它们的结构水合性质,并在广泛的TMAO浓度范围内,根据实验渗透系数和空气 - 水表面张力数据对模型进行了验证。这些模型还被用于研究TMAO对水溶液中一般疏水性聚合物折叠平衡的影响。有趣的是,我们发现TMAO在高达约1 M的TMAO浓度下越来越稳定聚合物的紧密球状状态,而随着TMAO浓度的进一步增加,又会使其不稳定。因此,根据溶液中TMAO的浓度,TMAO可作为稳定的渗透溶质或变性剂。高达1 M的TMAO诱导的稳定伴随着TMAO的正优先结合以及链构象熵的增加,而在高于1 M的浓度下,链构象熵会降低。这些结果在定性上与TMAO力场无关。