Suppr超能文献

利用汇总数据的力量进行癌症结局研究。

Leveraging the power of pooled data for cancer outcomes research.

作者信息

Hugh-Yeun Kiara, Cheung Winson Y

机构信息

Division of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada.

出版信息

Chin J Cancer. 2016 Aug 2;35(1):74. doi: 10.1186/s40880-016-0132-0.

Abstract

BACKGROUND

Clinical trials continue to be the gold standard for determining the efficacy of novel cancer treatments, but they may also expose participants to the potential risks of unpredictable or severe toxicities. The development of validated tools that better inform patients of the benefits and risks associated with clinical trial participation can facilitate the informed consent process. The design and validation of such instruments are strengthened when we leverage the power of pooled data analysis for cancer outcomes research.

MAIN BODY

In a recent study published in the Journal of Clinical Oncology entitled "Determinants of early mortality among 37,568 patients with colon cancer who participated in 25 clinical trials from the adjuvant colon cancer endpoints database," using a large pooled analysis of over 30,000 study participants who were enrolled in clinical trials of adjuvant therapy for early-stage colon cancer, we developed and validated a nomogram depicting the predictors of early cancer mortality. This database of pooled individual-level data allowed for a comprehensive analysis of poor prognostic factors associated with early death; furthermore, it enabled the creation of a nomogram that was able to reliably capture and quantify the benefit-to-risk profile for patients who are considering clinical trial participation. This tool can facilitate treatment decision-making discussions.

CONCLUSION

As China and other Asian countries continue to conduct oncology clinical trials, efforts to collate patient-level information from these studies into a large data repository should be strongly considered since pooled data can increase future capacity for cancer outcomes research, which, in turn, can enhance patient-physician discussions and optimize clinical care.

摘要

背景

临床试验仍然是确定新型癌症治疗方法疗效的金标准,但它们也可能使参与者面临不可预测或严重毒性的潜在风险。开发经过验证的工具,以便更好地让患者了解参与临床试验的益处和风险,有助于知情同意过程。当我们利用汇总数据分析的力量进行癌症结局研究时,此类工具的设计和验证会得到加强。

主体

在最近发表于《临床肿瘤学杂志》上的一项名为“来自辅助性结肠癌终点数据库的25项临床试验中的37568例结肠癌患者早期死亡率的决定因素”的研究中,我们对超过30000名参加早期结肠癌辅助治疗临床试验的研究参与者进行了大型汇总分析,开发并验证了一个描绘癌症早期死亡率预测因素的列线图。这个汇总的个体水平数据数据库允许对与早期死亡相关的不良预后因素进行全面分析;此外,它能够创建一个列线图,该列线图能够可靠地捕捉和量化考虑参与临床试验的患者的风险收益情况。这个工具可以促进治疗决策的讨论。

结论

随着中国和其他亚洲国家继续开展肿瘤学临床试验,应大力考虑将这些研究中的患者水平信息整理到一个大型数据存储库中的工作,因为汇总数据可以提高未来癌症结局研究的能力,进而加强医患讨论并优化临床护理。

相似文献

4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
Clinical Research Informatics: Supporting the Research Study Lifecycle.临床研究信息学:支持研究项目生命周期
Yearb Med Inform. 2017 Aug;26(1):193-200. doi: 10.15265/IY-2017-022. Epub 2017 Sep 11.

本文引用的文献

5
Mining the ACCENT database: a review and update.挖掘ACCENT数据库:综述与更新
Chin Clin Oncol. 2013 Jun;2(2):18. doi: 10.3978/j.issn.2304-3865.2013.03.05.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验