Suppr超能文献

使用下一代测序技术鉴定融合转录本。

Identifying fusion transcripts using next generation sequencing.

作者信息

Kumar Shailesh, Razzaq Sundus Khalid, Vo Angie Duy, Gautam Mamta, Li Hui

机构信息

Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA.

Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA.

出版信息

Wiley Interdiscip Rev RNA. 2016 Nov;7(6):811-823. doi: 10.1002/wrna.1382. Epub 2016 Aug 2.

Abstract

Fusion transcripts (i.e., chimeric RNAs) resulting from gene fusions have been used successfully for cancer diagnosis, prognosis, and therapeutic applications. In addition, many fusion transcripts are found in normal human cell lines and tissues, with some data supporting their role in normal physiology. Besides chromosomal rearrangement, intergenic splicing can generate them. Global identification of fusion transcripts becomes possible with the help of next generation sequencing technology like RNA-Seq. In the past decade, major advancements have been made for chimeric RNA discovery due to the development of advanced sequencing platform and software packages. However, current software tools behave differently in terms of specificity, sensitivity, time, and computational memory usage. Recent benchmarking studies showed that none of the tools are inclusive. The development of high performance (accurate and fast), and user-friendly fusion detection tool/pipeline is still an open quest. In this article, we review the existing software packages for fusion detection. We explain the methods of the tools, and discuss various factors that affect fusion detection. We summarize conclusions drawn from several comparative studies, and then discuss some of the pitfalls of these studies. We also describe the limitations of current tools, and suggest directions for future development. WIREs RNA 2016, 7:811-823. doi: 10.1002/wrna.1382 For further resources related to this article, please visit the WIREs website.

摘要

由基因融合产生的融合转录本(即嵌合RNA)已成功应用于癌症诊断、预后评估及治疗。此外,在正常人类细胞系和组织中也发现了许多融合转录本,一些数据支持它们在正常生理过程中的作用。除染色体重排外,基因间剪接也可产生融合转录本。借助RNA测序等新一代测序技术,融合转录本的全面鉴定成为可能。在过去十年中,由于先进测序平台和软件包的发展,嵌合RNA的发现取得了重大进展。然而,目前的软件工具在特异性、敏感性、时间和计算内存使用方面表现各异。最近的基准测试研究表明,没有一种工具是包罗万象的。开发高性能(准确且快速)、用户友好的融合检测工具/流程仍是一个有待解决的问题。在本文中,我们回顾了现有的融合检测软件包。我们解释了这些工具的方法,并讨论了影响融合检测的各种因素。我们总结了几项比较研究得出的结论,然后讨论了这些研究中的一些缺陷。我们还描述了当前工具的局限性,并提出了未来的发展方向。WIREs RNA 2016, 7:811 - 823. doi: 10.1002/wrna.1382 有关本文的更多资源,请访问WIREs网站。

相似文献

1
Identifying fusion transcripts using next generation sequencing.
Wiley Interdiscip Rev RNA. 2016 Nov;7(6):811-823. doi: 10.1002/wrna.1382. Epub 2016 Aug 2.
3
FUSIM: a software tool for simulating fusion transcripts.
BMC Bioinformatics. 2013 Jan 16;14:13. doi: 10.1186/1471-2105-14-13.
4
A Protocol for the Detection of Fusion Transcripts Using RNA-Sequencing Data.
Methods Mol Biol. 2024;2812:243-258. doi: 10.1007/978-1-0716-3886-6_14.
5
InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data.
PLoS One. 2016 Dec 1;11(12):e0167417. doi: 10.1371/journal.pone.0167417. eCollection 2016.
6
Application of next generation sequencing to human gene fusion detection: computational tools, features and perspectives.
Brief Bioinform. 2013 Jul;14(4):506-19. doi: 10.1093/bib/bbs044. Epub 2012 Aug 9.
7
Overview of Fusion Detection Strategies Using Next-Generation Sequencing.
Methods Mol Biol. 2019;1908:125-138. doi: 10.1007/978-1-4939-9004-7_9.
8
RNA-Seq methods for transcriptome analysis.
Wiley Interdiscip Rev RNA. 2017 Jan;8(1). doi: 10.1002/wrna.1364. Epub 2016 May 19.
9
Comparative study of bioinformatic tools for the identification of chimeric RNAs from RNA Sequencing.
RNA Biol. 2021 Oct 15;18(sup1):254-267. doi: 10.1080/15476286.2021.1940047. Epub 2021 Jun 18.
10
Open-access synthetic spike-in mRNA-seq data for cancer gene fusions.
BMC Genomics. 2014 Sep 30;15(1):824. doi: 10.1186/1471-2164-15-824.

引用本文的文献

1
PFusionDB: a comprehensive database of plant-specific fusion transcripts.
3 Biotech. 2024 Nov;14(11):282. doi: 10.1007/s13205-024-04132-1. Epub 2024 Oct 28.
2
A Protocol for the Detection of Fusion Transcripts Using RNA-Sequencing Data.
Methods Mol Biol. 2024;2812:243-258. doi: 10.1007/978-1-0716-3886-6_14.
3
Detection of novel PPP1R1B::STARD3 fusion transcript in acute myeloid leukemia: a case report.
J Med Case Rep. 2024 Jun 5;18(1):269. doi: 10.1186/s13256-024-04536-w.
4
Correlation between NGS panel-based mutation results and clinical information in colorectal cancer patients.
Heliyon. 2024 Apr 5;10(7):e29299. doi: 10.1016/j.heliyon.2024.e29299. eCollection 2024 Apr 15.
5
Viral oncogenes, viruses, and cancer: a third-generation sequencing perspective on viral integration into the human genome.
Front Oncol. 2023 Dec 21;13:1333812. doi: 10.3389/fonc.2023.1333812. eCollection 2023.
7
A Review of the Molecular Landscape of Adenoid Cystic Carcinoma of the Lacrimal Gland.
Int J Mol Sci. 2023 Sep 6;24(18):13755. doi: 10.3390/ijms241813755.
8
Chimeric RNAs reveal putative neoantigen peptides for developing tumor vaccines for breast cancer.
Front Immunol. 2023 Sep 6;14:1188831. doi: 10.3389/fimmu.2023.1188831. eCollection 2023.
9
Genetic Pathways in Peritoneal Mesothelioma Tumorigenesis.
Cancer Genomics Proteomics. 2023 Jul-Aug;20(4):363-374. doi: 10.21873/cgp.20388.
10
Targeted characterization of fusion transcripts in tumor and normal tissues via FusionInspector.
Cell Rep Methods. 2023 May 8;3(5):100467. doi: 10.1016/j.crmeth.2023.100467. eCollection 2023 May 22.

本文引用的文献

1
Discovering and understanding oncogenic gene fusions through data intensive computational approaches.
Nucleic Acids Res. 2016 Jun 2;44(10):4487-503. doi: 10.1093/nar/gkw282. Epub 2016 Apr 21.
3
Recurrent chimeric fusion RNAs in non-cancer tissues and cells.
Nucleic Acids Res. 2016 Apr 7;44(6):2859-72. doi: 10.1093/nar/gkw032. Epub 2016 Feb 2.
4
FuMa: reporting overlap in RNA-seq detected fusion genes.
Bioinformatics. 2016 Apr 15;32(8):1226-8. doi: 10.1093/bioinformatics/btv721. Epub 2015 Dec 10.
6
INTEGRATE: gene fusion discovery using whole genome and transcriptome data.
Genome Res. 2016 Jan;26(1):108-18. doi: 10.1101/gr.186114.114. Epub 2015 Nov 10.
8
FusionCancer: a database of cancer fusion genes derived from RNA-seq data.
Diagn Pathol. 2015 Jul 28;10:131. doi: 10.1186/s13000-015-0310-4.
9
Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.
Nucleic Acids Res. 2015 Oct 15;43(18):e116. doi: 10.1093/nar/gkv562. Epub 2015 Jun 3.
10
JAFFA: High sensitivity transcriptome-focused fusion gene detection.
Genome Med. 2015 May 11;7(1):43. doi: 10.1186/s13073-015-0167-x. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验