Suppr超能文献

嵌合 RNA 揭示了用于开发乳腺癌肿瘤疫苗的潜在新抗原肽。

Chimeric RNAs reveal putative neoantigen peptides for developing tumor vaccines for breast cancer.

机构信息

Department of Biology & Biochemistry, University of Houston, Houston, TX, United States.

Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States.

出版信息

Front Immunol. 2023 Sep 6;14:1188831. doi: 10.3389/fimmu.2023.1188831. eCollection 2023.

Abstract

INTRODUCTION

We present here a strategy to identify immunogenic neoantigen candidates from unique amino acid sequences at the junctions of fusion proteins which can serve as targets in the development of tumor vaccines for the treatment of breastcancer.

METHOD

We mined the sequence reads of breast tumor tissue that are usually discarded as discordant paired-end reads and discovered cancer specific fusion transcripts using tissue from cancer free controls as reference. Binding affinity predictions of novel peptide sequences crossing the fusion junction were analyzed by the MHC Class I binding predictor, MHCnuggets. CD8+ T cell responses against the 15 peptides were assessed through in vitro Enzyme Linked Immunospot (ELISpot).

RESULTS

We uncovered 20 novel fusion transcripts from 75 breast tumors of 3 subtypes: TNBC, HER2+, and HR+. Of these, the NSFP1-LRRC37A2 fusion transcript was selected for further study. The 3833 bp chimeric RNA predicted by the consensus fusion junction sequence is consistent with a read-through transcription of the 5'-gene NSFP1-Pseudo gene NSFP1 (NSFtruncation at exon 12/13) followed by trans-splicing to connect withLRRC37A2 located immediately 3' through exon 1/2. A total of 15 different 8-mer neoantigen peptides discovered from the NSFP1 and LRRC37A2 truncations were predicted to bind to a total of 35 unique MHC class I alleles with a binding affinity of IC50<500nM.); 1 of which elicited a robust immune response.

CONCLUSION

Our data provides a framework to identify immunogenic neoantigen candidates from fusion transcripts and suggests a potential vaccine strategy to target the immunogenic neopeptides in patients with tumors carrying the NSFP1-LRRC37A2 fusion.

摘要

简介

我们在此提出了一种从融合蛋白连接处的独特氨基酸序列中鉴定免疫原性新抗原候选物的策略,这些候选物可作为开发用于治疗乳腺癌的肿瘤疫苗的靶点。

方法

我们从通常被视为不一致的配对末端读取而丢弃的乳腺癌组织的序列读取中挖掘,并使用无癌对照组织作为参考来发现癌症特异性融合转录本。通过 MHC 类 I 结合预测器 MHCnuggets 分析跨越融合接头的新肽序列的结合亲和力预测。通过体外酶联免疫斑点(ELISpot)评估针对 15 个肽的 CD8+T 细胞反应。

结果

我们从 3 种亚型(TNBC、HER2+和 HR+)的 75 个乳腺癌肿瘤中发现了 20 个新的融合转录本。其中,NSFP1-LRRC37A2 融合转录本被选择用于进一步研究。共识融合接头序列预测的 3833bp 嵌合 RNA 与 5'-基因 NSFP1-假基因 NSFP1(NSF 在 exon12/13 处截断)的通读转录一致,然后通过反式剪接与立即位于 3'处的 LRRC37A2 连接通过 exon1/2。从 NSFP1 和 LRRC37A2 截断中发现的总共 15 个不同的 8 聚体新抗原肽被预测与总共 35 个独特的 MHC 类 I 等位基因结合,结合亲和力 IC50<500nM);其中 1 个引发了强烈的免疫反应。

结论

我们的数据提供了一种从融合转录本中鉴定免疫原性新抗原候选物的框架,并提出了一种潜在的疫苗策略,以针对携带 NSFP1-LRRC37A2 融合的肿瘤患者的免疫新肽进行靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a64/10512078/bc9cd775548d/fimmu-14-1188831-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验