Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.
Pharmaceutical Division, Ube Industries, Ltd., Seavans North Bldg, 1-2-1 Shibaura, Minato-ku, Tokyo, 105-8449, Japan.
Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10781-5. doi: 10.1002/anie.201605008. Epub 2016 Aug 3.
Although there are ways to synthesize ortho-pentafluoro-λ(6) -sulfanyl (SF5 ) pyridines, meta- and para-SF5 -substituted pyridines are rare. We disclose herein a general route for their synthesis. The fundamental synthetic approach is the same as reported methods for ortho-SF5 -substituted pyridines and SF5 -substituted arenes, that is, oxidative chlorotetrafluorination of the corresponding disulfides to give pyridylsulfur chlorotetrafluorides (SF4 Cl-pyridines), followed by chloride/fluoride exchange with fluorides. However, the trick in this case is the presence on the pyridine ring of at least one fluorine atom, which is essential for the successful transformation of the disulfides into m-and p-SF5 -pyridines. After enabling the synthesis of an SF5 -substituted pyridine, ortho-F groups can be efficiently substituted by C, N, S, and O nucleophiles through an SN Ar pathway. This methodology provides access to a variety of previously unavailable SF5 -substituted pyridine building blocks.
尽管有合成邻位五氟-λ(6)-硫基(SF5)吡啶的方法,但间位和对位 SF5 取代吡啶则很少见。本文公开了一种它们的通用合成路线。基本的合成方法与报道的邻位 SF5 取代吡啶和 SF5 取代芳烃的方法相同,即相应的二硫化物的氧化氯四氟化得到吡啶基硫氯四氟化物(SF4Cl-吡啶),然后与氟化物进行氯/氟交换。然而,在这种情况下的关键是吡啶环上至少有一个氟原子,这对于成功地将二硫化物转化为间位和对位 SF5 吡啶是必不可少的。在能够合成 SF5 取代吡啶后,可以通过 SNAr 途径,用 C、N、S 和 O 亲核试剂有效地取代邻位-F 基团。这种方法学提供了多种以前无法获得的 SF5 取代吡啶砌块。