Suppr超能文献

基于假设与数据的方法对物种分布范围进行总结。

Assumption-versus data-based approaches to summarizing species' ranges.

机构信息

Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, U.S.A.

Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, D.F, 04510, Mexico.

出版信息

Conserv Biol. 2018 Jun;32(3):568-575. doi: 10.1111/cobi.12801. Epub 2016 Nov 9.

Abstract

For conservation decision making, species' geographic distributions are mapped using various approaches. Some such efforts have downscaled versions of coarse-resolution extent-of-occurrence maps to fine resolutions for conservation planning. We examined the quality of the extent-of-occurrence maps as range summaries and the utility of refining those maps into fine-resolution distributional hypotheses. Extent-of-occurrence maps tend to be overly simple, omit many known and well-documented populations, and likely frequently include many areas not holding populations. Refinement steps involve typological assumptions about habitat preferences and elevational ranges of species, which can introduce substantial error in estimates of species' true areas of distribution. However, no model-evaluation steps are taken to assess the predictive ability of these models, so model inaccuracies are not noticed. Whereas range summaries derived by these methods may be useful in coarse-grained, global-extent studies, their continued use in on-the-ground conservation applications at fine spatial resolutions is not advisable in light of reliance on assumptions, lack of real spatial resolution, and lack of testing. In contrast, data-driven techniques that integrate primary data on biodiversity occurrence with remotely sensed data that summarize environmental dimensions (i.e., ecological niche modeling or species distribution modeling) offer data-driven solutions based on a minimum of assumptions that can be evaluated and validated quantitatively to offer a well-founded, widely accepted method for summarizing species' distributional patterns for conservation applications.

摘要

为了进行保护决策,使用各种方法来绘制物种的地理分布。一些此类工作已经将粗分辨率的出现范围图的降尺度版本细化为精细分辨率,以进行保护规划。我们检查了出现范围图作为范围摘要的质量,以及将这些图细化为精细分辨率分布假设的效用。出现范围图往往过于简单,忽略了许多已知和记录良好的种群,并且可能经常包含许多没有种群的区域。细化步骤涉及关于物种栖息地偏好和海拔范围的类型学假设,这些假设在估计物种真实分布区域时可能会引入大量误差。但是,没有采取模型评估步骤来评估这些模型的预测能力,因此不会注意到模型的不准确性。尽管这些方法得出的范围摘要在粗粒度的全球范围研究中可能有用,但鉴于对假设的依赖、缺乏真实的空间分辨率以及缺乏测试,在精细空间分辨率下继续将其用于实地保护应用中是不可取的。相比之下,将生物多样性出现的原始数据与总结环境维度的遥感数据(即生态位模型或物种分布模型)集成的数据驱动技术提供了基于最少假设的基于数据的解决方案,可以对其进行定量评估和验证,为保护应用中总结物种分布模式提供了一种有充分依据、广泛接受的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验