Suppr超能文献

通过组基数约束分类提取区分HIV相关神经变性与轻度认知障碍的形态测量模式。

Extracting patterns of morphometry distinguishing HIV associated neurodegeneration from mild cognitive impairment via group cardinality constrained classification.

作者信息

Zhang Yong, Kwon Dongjin, Esmaeili-Firidouni Pardis, Pfefferbaum Adolf, Sullivan Edith V, Javitz Harold, Valcour Victor, Pohl Kilian M

机构信息

Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, 94305.

Center for Health Sciences, SRI International, Menlo Park, California, 94025.

出版信息

Hum Brain Mapp. 2016 Dec;37(12):4523-4538. doi: 10.1002/hbm.23326. Epub 2016 Aug 4.

Abstract

HIV-Associated Neurocognitive Disorder (HAND) is the most common constellation of cognitive dysfunctions in chronic HIV infected patients age 60 or older in the U.S. Only few published methods assist in distinguishing HAND from other forms of age-associated cognitive decline, such as Mild Cognitive Impairment (MCI). In this report, a data-driven, nonparameteric model to identify morphometric patterns separating HAND from MCI due to non-HIV conditions in this older age group was proposed. This model enhanced the potential for group separation by combining a smaller, longitudinal data set containing HAND samples with a larger, public data set including MCI cases. Using cross-validation, a linear model on healthy controls to harmonize the volumetric scores extracted from MRIs for demographic and acquisition differences between the two independent, disease-specific data sets was trained. Next, patterns distinguishing HAND from MCI via a group sparsity constrained logistic classifier were identified. Unlike existing approaches, our classifier directly solved the underlying minimization problem by decoupling the minimization of the logistic regression function from enforcing the group sparsity constraint. The extracted patterns consisted of eight regions that distinguished HAND from MCI on a significant level while being indifferent to differences in demographics and acquisition between the two sets. Individually selecting regions through conventional morphometric group analysis resulted in a larger number of regions that were less accurate. In conclusion, simultaneously analyzing all brain regions and time points for disease specific patterns contributed to distinguishing with high accuracy HAND-related impairment from cognitive impairment found in the HIV uninfected, MCI cohort. Hum Brain Mapp 37:4523-4538, 2016. © 2016 Wiley Periodicals, Inc.

摘要

人类免疫缺陷病毒相关神经认知障碍(HAND)是美国60岁及以上慢性HIV感染患者中最常见的认知功能障碍类型。目前仅有少数已发表的方法可用于区分HAND与其他形式的年龄相关认知衰退,如轻度认知障碍(MCI)。在本报告中,我们提出了一种数据驱动的非参数模型,用于识别在该老年人群中区分HAND与非HIV相关疾病所致MCI的形态学模式。该模型通过将包含HAND样本的较小纵向数据集与包含MCI病例的较大公共数据集相结合,增强了组间分离的潜力。通过交叉验证,我们训练了一个针对健康对照的线性模型,以协调从MRI中提取的体积分数,从而消除两个独立的疾病特异性数据集之间在人口统计学和采集方面的差异。接下来,通过组稀疏约束逻辑分类器识别区分HAND与MCI的模式。与现有方法不同,我们的分类器通过将逻辑回归函数的最小化与实施组稀疏约束解耦,直接解决了潜在的最小化问题。提取的模式由八个区域组成,这些区域在显著水平上区分了HAND与MCI,同时对两组之间的人口统计学和采集差异不敏感。通过传统形态学组分析单独选择区域会导致更多区域但准确性较低。总之,同时分析所有脑区和时间点以寻找疾病特异性模式有助于高精度地区分HAND相关损伤与未感染HIV的MCI队列中的认知损伤。《人类大脑图谱》37:4523 - 4538,2016年。© 2016威利期刊公司。

相似文献

2
Joint Data Harmonization and Group Cardinality Constrained Classification.联合数据协调与组基数约束分类
Med Image Comput Comput Assist Interv. 2016 Oct;9900:282-290. doi: 10.1007/978-3-319-46720-7_33. Epub 2016 Oct 2.
3
Making use of longitudinal information in pattern recognition.在模式识别中利用纵向信息。
Hum Brain Mapp. 2016 Dec;37(12):4385-4404. doi: 10.1002/hbm.23317. Epub 2016 Jul 25.

引用本文的文献

3
A Penalty Approach for Normalizing Feature Distributions to Build Confounder-Free Models.一种用于归一化特征分布以构建无混杂因素模型的惩罚方法。
Med Image Comput Comput Assist Interv. 2022 Sep;13433:387-397. doi: 10.1007/978-3-031-16437-8_37. Epub 2022 Sep 16.
5
Alzheimer Disease and HIV: Untangling the Gordian Knot.阿尔茨海默病与艾滋病:解开戈尔迪之结。
Neurol Clin Pract. 2021 Oct;11(5):365-366. doi: 10.1212/CPJ.0000000000001102.
6
Metadata Normalization.元数据规范化
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2021 Jun;2021:10912-10922. doi: 10.1109/cvpr46437.2021.01077. Epub 2021 Nov 2.

本文引用的文献

1
Solving Logistic Regression with Group Cardinality Constraints for Time Series Analysis.用于时间序列分析的具有组基数约束的逻辑回归求解
Med Image Comput Comput Assist Interv. 2015 Oct;9351:459-466. doi: 10.1007/978-3-319-24574-4_55. Epub 2015 Nov 18.
7
Sparse network-based models for patient classification using fMRI.基于稀疏网络的功能磁共振成像患者分类模型
Neuroimage. 2015 Jan 15;105:493-506. doi: 10.1016/j.neuroimage.2014.11.021. Epub 2014 Nov 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验