Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
Angew Chem Int Ed Engl. 2016 Oct 10;55(42):13061-13066. doi: 10.1002/anie.201604108.
We report a novel catalytic conversion of biomass-derived furans and alcohols to aromatics over zeolite catalysts. Aromatics are formed via Diels-Alder cycloaddition with ethylene, which is produced in situ from ethanol dehydration. The use of liquid ethanol instead of gaseous ethylene, as the source of dienophile in this one-pot synthesis, makes the aromatics production much simpler and renewable, circumventing the use of ethylene at high pressure. More importantly, both our experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites. Synchrotron-diffraction experiments and proton-affinity calculations clearly suggest that a preferred protonation of ethanol over the furan is a key step facilitating the Diels-Alder and dehydration reactions in the acid sites of the zeolite.
我们报告了一种在沸石催化剂上将生物质衍生的呋喃和醇转化为芳烃的新型催化转化方法。芳烃是通过与乙烯的 Diels-Alder 环加成形成的,乙烯是由乙醇脱水原位产生的。与使用气态乙烯作为亲二烯体来源相比,在一锅法合成中使用液态乙醇作为亲二烯体来源,使得芳烃的生产更加简单和可再生,避免了在高压下使用乙烯。更重要的是,我们的实验和理论研究都表明,由于在固体酸位上的活化能垒较低,使用乙醇代替乙烯可显著提高芳烃的产率和选择性。同步辐射衍射实验和质子亲和能计算清楚地表明,在沸石的酸位上,乙醇优先质子化而不是呋喃,这是促进 Diels-Alder 和脱水反应的关键步骤。