Mallinckrodt Craig, Molenberghs Geert, Rathmann Suchitrita
Lilly Research Labs, Eli Lilly and Co, Indianapolis, IN, USA.
I-BioStat, Hasselt University, Diepenbeek, Belgium.
Pharm Stat. 2017 Jan;16(1):29-36. doi: 10.1002/pst.1765. Epub 2016 Aug 5.
Recent research has fostered new guidance on preventing and treating missing data. Consensus exists that clear objectives should be defined along with the causal estimands; trial design and conduct should maximize adherence to the protocol specified interventions; and a sensible primary analysis should be used along with plausible sensitivity analyses. Two general categories of estimands are effects of the drug as actually taken (de facto, effectiveness) and effects of the drug if taken as directed (de jure, efficacy). Motivated by examples, we argue that no single estimand is likely to meet the needs of all stakeholders and that each estimand has strengths and limitations. Therefore, stakeholder input should be part of an iterative study development process that includes choosing estimands that are consistent with trial objectives. To this end, an example is used to illustrate the benefit from assessing multiple estimands in the same study. A second example illustrates that maximizing adherence reduces sensitivity to missing data assumptions for de jure estimands but may reduce generalizability of results for de facto estimands if efforts to maximize adherence in the trial are not feasible in clinical practice. A third example illustrates that whether or not data after initiation of rescue medication should be included in the primary analysis depends on the estimand to be tested and the clinical setting. We further discuss the sample size and total exposure to placebo implications of including post-rescue data in the primary analysis. Copyright © 2016 John Wiley & Sons, Ltd.
近期的研究催生了关于预防和处理缺失数据的新指南。目前已达成共识,即应明确目标并确定因果估计量;试验设计与实施应最大限度地遵循方案规定的干预措施;应采用合理的主要分析方法并结合合理的敏感性分析。估计量主要分为两类:实际服用药物的效果(事实上的效果,即有效性)和按规定服用药物的效果(法律上的效果,即效力)。基于实例,我们认为没有单一的估计量可能满足所有利益相关者的需求,且每个估计量都有其优势和局限性。因此,利益相关者的投入应成为迭代研究开发过程的一部分,该过程包括选择与试验目标一致的估计量。为此,本文通过一个实例来说明在同一研究中评估多个估计量的益处。第二个实例表明,最大限度地提高依从性可降低对法律上估计量缺失数据假设的敏感性,但如果在临床试验中最大限度提高依从性的努力在临床实践中不可行,那么可能会降低事实上估计量结果的普遍性。第三个实例表明,救援药物开始使用后的数据是否应纳入主要分析,取决于要检验的估计量和临床背景。我们还进一步讨论了在主要分析中纳入救援后数据对样本量和安慰剂总暴露量的影响。版权所有© 2016约翰·威利父子有限公司。