Suppr超能文献

对存在方案偏离的纵向试验的分析:一个用于相关、可及假设以及通过多重填补进行推断的框架。

Analysis of longitudinal trials with protocol deviation: a framework for relevant, accessible assumptions, and inference via multiple imputation.

作者信息

Carpenter James R, Roger James H, Kenward Michael G

机构信息

a Medical Statistics Department , London School of Hygiene & Tropical Medicine , London , UK.

出版信息

J Biopharm Stat. 2013;23(6):1352-71. doi: 10.1080/10543406.2013.834911.

Abstract

Protocol deviations, for example, due to early withdrawal and noncompliance, are unavoidable in clinical trials. Such deviations often result in missing data. Additional assumptions are then needed for the analysis, and these cannot be definitively verified from the data at hand. Thus, as recognized by recent regulatory guidelines and reports, clarity about these assumptions and their implications is vital for both the primary analysis and framing relevant sensitivity analysis. This article focuses on clinical trials with longitudinal quantitative outcome data. For the target population, we define two estimands, the de jure estimand, "does the treatment work under the best case scenario," and the de facto estimand, "what would be the effect seen in practice." We then carefully define the concept of a deviation from the protocol relevant to the estimand, or for short a deviation. Each patient's postrandomization data can then be divided into predeviation data and postdeviation data. We set out an accessible framework for contextually appropriate assumptions relevant to de facto and de jure estimands, that is, assumptions about the joint distribution of pre- and postdeviation data relevant to the clinical question at hand. We then show how, under these assumptions, multiple imputation provides a practical approach to estimation and inference. We illustrate with data from a longitudinal clinical trial in patients with chronic asthma.

摘要

例如,由于提前退出和不依从导致的方案偏离在临床试验中是不可避免的。此类偏离往往会导致数据缺失。分析时就需要额外的假设,而这些假设无法从手头的数据中得到确切验证。因此,正如近期监管指南和报告所认可的那样,明确这些假设及其影响对于主要分析和构建相关敏感性分析至关重要。本文聚焦于具有纵向定量结局数据的临床试验。对于目标人群,我们定义了两个估计量,即法律上的估计量“在最佳情况下治疗是否有效”和事实上的估计量“在实际中会看到什么效果”。然后,我们仔细定义了与估计量相关的方案偏离概念,简称为偏离。然后,每个患者随机分组后的数据可以分为偏离前数据和偏离后数据。我们为与事实上和法律上的估计量相关的、在情境中合适的假设建立了一个易懂的框架,即关于与手头临床问题相关的偏离前和偏离后数据联合分布的假设。然后,我们展示了在这些假设下,多重填补如何提供一种实用的估计和推断方法。我们用一项针对慢性哮喘患者的纵向临床试验数据进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验