Fujita Keisuke, Iwaki Mitsuhiro
Quantitative Biology Center, RIKEN, Suita, Osaka 565-0874, Japan.
Quantitative Biology Center, RIKEN, Suita, Osaka 565-0874, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
Biophysics (Nagoya-shi). 2014 Nov 1;10:69-75. doi: 10.2142/biophysics.10.69. eCollection 2014.
Myosin V is a vesicle transporter that unidirectionally walks along cytoskeletal actin filaments by converting the chemical energy of ATP into mechanical work. Recently, it was found that myosin V force generation is a composition of two processes: a lever-arm swing, which involves a conformational change in the myosin molecule, and a Brownian search-and-catch, which involves a diffusive "search" by the motor domain that is followed by an asymmetric "catch" in the forward actin target such that Brownian motion is rectified. Here we developed a system that combines optical tweezers with DNA nano-material to show that the Brownian search-and-catch mechanism is the energetically dominant process at near stall force, providing 13 kBT of work compared to just 3 kBT by the lever-arm swing. Our result significantly reconsiders the lever-arm swinging model, which assumes the swing dominantly produces work (>10 kBT), and sheds light on the Brownian search-and-catch as a driving process.
肌球蛋白V是一种囊泡转运蛋白,它通过将ATP的化学能转化为机械功,沿着细胞骨架肌动蛋白丝单向移动。最近,人们发现肌球蛋白V产生力的过程由两个过程组成:一个是杠杆臂摆动,这涉及到肌球蛋白分子的构象变化;另一个是布朗搜索与捕获,这涉及到运动结构域的扩散“搜索”,随后是在前向肌动蛋白靶点上的不对称“捕获”,从而使布朗运动得到整流。在这里,我们开发了一种将光镊与DNA纳米材料相结合的系统,以表明布朗搜索与捕获机制是接近失速力时能量上占主导的过程,该机制提供了13kBT的功,而杠杆臂摆动仅提供3kBT的功。我们的结果显著地重新审视了杠杆臂摆动模型(该模型假设摆动主要产生功(>10kBT)),并揭示了布朗搜索与捕获作为一个驱动过程的作用。