Lhachimi Stefan K, Nusselder Wilma J, Smit Henriette A, Baili Paolo, Bennett Kathleen, Fernández Esteve, Kulik Margarete C, Lobstein Tim, Pomerleau Joceline, Boshuizen Hendriek C, Mackenbach Johan P
Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Research Group for Evidence Based Public Health, Institute for Public Health and Nursing, University Bremen & Leibniz Institute for Epidemiology and Prevention Research, Bremen, Germany.
BMC Public Health. 2016 Aug 5;16:734. doi: 10.1186/s12889-016-3299-z.
Influencing the life-style risk-factors alcohol, body mass index (BMI), and smoking is an European Union (EU) wide objective of public health policy. The population-level health effects of these risk-factors depend on population specific characteristics and are difficult to quantify without dynamic population health models.
For eleven countries-approx. 80 % of the EU-27 population-we used evidence from the publicly available DYNAMO-HIA data-set. For each country the age- and sex-specific risk-factor prevalence and the incidence, prevalence, and excess mortality of nine chronic diseases are utilized; including the corresponding relative risks linking risk-factor exposure causally to disease incidence and all-cause mortality. Applying the DYNAMO-HIA tool, we dynamically project the country-wise potential health gains and losses using feasible, i.e. observed elsewhere, risk-factor prevalence rates as benchmarks. The effects of the "worst practice", "best practice", and the currently observed risk-factor prevalence on population health are quantified and expected changes in life expectancy, morbidity-free life years, disease cases, and cumulative mortality are reported.
Applying the best practice smoking prevalence yields the largest gains in life expectancy with 0.4 years for males and 0.3 year for females (approx. 332,950 and 274,200 deaths postponed, respectively) while the worst practice smoking prevalence also leads to the largest losses with 0.7 years for males and 0.9 year for females (approx. 609,400 and 710,550 lives lost, respectively). Comparing morbidity-free life years, the best practice smoking prevalence shows the highest gains for males with 0.4 years (342,800 less disease cases), whereas for females the best practice BMI prevalence yields the largest gains with 0.7 years (1,075,200 less disease cases).
Smoking is still the risk-factor with the largest potential health gains. BMI, however, has comparatively large effects on morbidity. Future research should aim to improve knowledge of how policies can influence and shape individual and aggregated life-style-related risk-factor behavior.
影响生活方式风险因素,即饮酒、体重指数(BMI)和吸烟,是欧盟范围内公共卫生政策的目标。这些风险因素对人群健康的影响取决于特定人群的特征,并且在没有动态人群健康模型的情况下很难进行量化。
对于11个国家(约占欧盟27国人口的80%),我们使用了公开可用的DYNAMO-HIA数据集的证据。对于每个国家,利用特定年龄和性别的风险因素患病率以及9种慢性病的发病率、患病率和超额死亡率;包括将风险因素暴露与疾病发病率和全因死亡率因果关联的相应相对风险。应用DYNAMO-HIA工具,我们以可行的(即在其他地方观察到的)风险因素患病率为基准,动态预测各国潜在的健康收益和损失。量化了“最差实践”、“最佳实践”以及当前观察到的风险因素患病率对人群健康的影响,并报告了预期的预期寿命、无病生存年数、疾病病例数和累积死亡率的变化。
采用最佳实践吸烟患病率可使预期寿命获得最大增益,男性为0.4年,女性为0.3年(分别约推迟332,950例和274,200例死亡),而最差实践吸烟患病率也导致最大损失,男性为0.7年,女性为0.9年(分别约损失609,400例和710,550例生命)。比较无病生存年数,最佳实践吸烟患病率对男性的增益最高,为0.4年(减少342,800例疾病病例),而对于女性,最佳实践BMI患病率的增益最大,为0.7年(减少1,075,200例疾病病例)。
吸烟仍然是具有最大潜在健康收益的风险因素。然而,BMI对发病率的影响相对较大。未来的研究应旨在提高对政策如何影响和塑造个体及总体与生活方式相关的风险因素行为的认识。