文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

内皮糖萼条件影响纳米颗粒的被动靶向摄取。

Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting.

作者信息

Cheng Ming J, Kumar Rajiv, Sridhar Srinivas, Webster Thomas J, Ebong Eno E

机构信息

Department of Chemical Engineering.

Department of Physics, Northeastern University.

出版信息

Int J Nanomedicine. 2016 Jul 21;11:3305-15. doi: 10.2147/IJN.S106299. eCollection 2016.


DOI:10.2147/IJN.S106299
PMID:27499624
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4959595/
Abstract

Cardiovascular diseases are facilitated by endothelial cell (EC) dysfunction and coincide with EC glycocalyx coat shedding. These diseases may be prevented by delivering medications to affected vascular regions using circulating nanoparticle (NP) drug carriers. The objective of the present study was to observe how the delivery of 10 nm polyethylene glycol-coated gold NPs (PEG-AuNP) to ECs is impacted by glycocalyx structure on the EC surface. Rat fat pad endothelial cells were chosen for their robust glycocalyx, verified by fluorescent immunolabeling of adsorbed albumin and integrated heparan sulfate (HS) chains. Confocal fluorescent imaging revealed a ~3 µm thick glycocalyx layer, covering 75% of the ECs and containing abundant HS. This healthy glycocalyx hindered the uptake of PEG-AuNP as expected because glycocalyx pores are typically 7 nm wide. Additional glycocalyx models tested included: a collapsed glycocalyx obtained by culturing cells in reduced protein media, a degraded glycocalyx obtained by applying heparinase III enzyme to specifically cleave HS, and a recovered glycocalyx obtained by supplementing exogenous HS into the media after enzyme degradation. The collapsed glycocalyx waŝ2 µm thick with unchanged EC coverage and sustained HS content. The degraded glycocalyx showed similar changes in EC thickness and coverage but its HS thickness was reduced to 0.7 µm and spanned only 10% of the original EC surface. Both dysfunctional models retained six- to sevenfold more PEG-AuNP compared to the healthy glycocalyx. The collapsed glycocalyx permitted NPs to cross the glycocalyx into intracellular spaces, whereas the degraded glycocalyx trapped the PEG-AuNP within the glycocalyx. The repaired glycocalyx model partially restored HS thickness to 1.2 µm and 44% coverage of the ECs, but it was able to reverse the NP uptake back to baseline levels. In summary, this study showed that the glycocalyx structure is critical for NP uptake by ECs and may serve as a passive pathway for delivering NPs to dysfunctional ECs.

摘要

心血管疾病因内皮细胞(EC)功能障碍而加剧,且与EC糖萼层脱落同时发生。通过使用循环纳米颗粒(NP)药物载体将药物递送至受影响的血管区域,这些疾病或许可以得到预防。本研究的目的是观察EC表面的糖萼结构如何影响10纳米聚乙二醇包被的金纳米颗粒(PEG-AuNP)向EC的递送。选择大鼠脂肪垫内皮细胞是因为其具有强大的糖萼,这通过吸附白蛋白和整合硫酸乙酰肝素(HS)链的荧光免疫标记得以验证。共聚焦荧光成像显示有一层约3微米厚的糖萼层,覆盖75%的EC,且含有丰富的HS。正如预期的那样,这种健康的糖萼阻碍了PEG-AuNP的摄取,因为糖萼孔隙通常宽7纳米。测试的其他糖萼模型包括:通过在低蛋白培养基中培养细胞获得的塌陷糖萼、通过应用肝素酶III特异性切割HS获得的降解糖萼,以及在酶降解后通过向培养基中补充外源性HS获得的恢复糖萼。塌陷的糖萼厚2微米,EC覆盖率不变,HS含量持续存在。降解的糖萼在EC厚度和覆盖率上显示出类似变化,但其HS厚度降至0.7微米,仅覆盖原始EC表面的10%。与健康糖萼相比,这两种功能失调模型保留的PEG-AuNP都多出六到七倍。塌陷的糖萼允许NP穿过糖萼进入细胞内空间,而降解的糖萼则将PEG-AuNP困在糖萼内。修复后的糖萼模型使HS厚度部分恢复至1.2微米,EC覆盖率恢复至44%,但它能够将NP摄取量逆转回基线水平。总之,本研究表明糖萼结构对于EC摄取NP至关重要,并且可能作为将NP递送至功能失调EC的一条被动途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/7fa1b68cf3e6/ijn-11-3305Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/f22437070baf/ijn-11-3305Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/3762e511c359/ijn-11-3305Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/ec027aa6e8aa/ijn-11-3305Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/7fa1b68cf3e6/ijn-11-3305Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/f22437070baf/ijn-11-3305Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/3762e511c359/ijn-11-3305Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/ec027aa6e8aa/ijn-11-3305Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e0/4959595/7fa1b68cf3e6/ijn-11-3305Fig4.jpg

相似文献

[1]
Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting.

Int J Nanomedicine. 2016-7-21

[2]
Regeneration of glycocalyx by heparan sulfate and sphingosine 1-phosphate restores inter-endothelial communication.

PLoS One. 2017-10-12

[3]
Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses.

Sci Rep. 2023-3-18

[4]
Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding.

Am J Physiol Heart Circ Physiol. 2013-11-27

[5]
Ultrasmall gold nanorods: synthesis and glycocalyx-related permeability in human endothelial cells.

Int J Nanomedicine. 2019-1-17

[6]
Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1.

Integr Biol (Camb). 2014-1-30

[7]
Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes.

Microvasc Res. 2010-6-21

[8]
Differential binding of chemokines CXCL1, CXCL2 and CCL2 to mouse glomerular endothelial cells reveals specificity for distinct heparan sulfate domains.

PLoS One. 2018-9-24

[9]
Relative shedding of glycosaminoglycans from the endothelial glycocalyx during inflammation and their contribution to stiffness of the glycocalyx.

Biorheology. 2019

[10]
Endothelial Glycocalyx-Mediated Nitric Oxide Production in Response to Selective AFM Pulling.

Biophys J. 2017-7-11

引用本文的文献

[1]
Glycocalyx Interactions Modulate the Cellular Uptake of Albumin-Coated Nanoparticles.

ACS Appl Bio Mater. 2024-11-18

[2]
Rapid cellular uptake of citrate-coated iron oxide nanoparticles unaffected by cell-surface glycosaminoglycans.

Nanoscale Adv. 2024-6-13

[3]
Research and application of leek roots in medicinal field.

Chin Herb Med. 2023-6-10

[4]
Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses.

Sci Rep. 2023-3-18

[5]
Glycocalyx Components Detune the Cellular Uptake of Gold Nanoparticles in a Size- and Charge-Dependent Manner.

ACS Appl Bio Mater. 2023-1-16

[6]
Tetramethylpyrazine Alleviates Endothelial Glycocalyx Degradation and Promotes Glycocalyx Restoration via TLR4/NF-κB/HPSE1 Signaling Pathway During Inflammation.

Front Pharmacol. 2022-1-3

[7]
Imaging therapeutic peptide transport across intestinal barriers.

RSC Chem Biol. 2021-6-15

[8]
Differences of the tumour cell glycocalyx affect binding of capsaicin-loaded chitosan nanocapsules.

Sci Rep. 2020-12-31

[9]
Endothelial glycocalyx damage as a systemic inflammatory microvascular endotheliopathy in COVID-19.

Biomed J. 2020-8-24

[10]
Nanoparticles exhibit greater accumulation in kidney glomeruli during experimental glomerular kidney disease.

Physiol Rep. 2020-8

本文引用的文献

[1]
Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes.

Nanoscale. 2015-7-14

[2]
Recent insights into the cellular biology of atherosclerosis.

J Cell Biol. 2015-4-13

[3]
Advances in multifunctional glycosylated nanomaterials: preparation and applications in glycoscience.

Carbohydr Res. 2015-3-20

[4]
The role of heparan sulfate as determining pathogenic factor in complement factor H-associated diseases.

Mol Immunol. 2015-2

[5]
Matrix Metalloproteinase Responsive, Proximity-activated Polymeric Nanoparticles for siRNA Delivery.

Adv Funct Mater. 2013-6-25

[6]
Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes.

ACS Nano. 2014-9-23

[7]
The cancer glycocalyx mechanically primes integrin-mediated growth and survival.

Nature. 2014-7-17

[8]
The endothelial glycocalyx: a review of the vascular barrier.

Anaesthesia. 2014-4-28

[9]
A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a Bio-nanocapsule via an endocytic uptake pathway.

J Nanobiotechnology. 2014-4-1

[10]
Nanomechanics of vascular endothelium.

Cell Tissue Res. 2014-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索