Suppr超能文献

小鼠输卵管中三维上皮褶皱模式形成的机械调节

Mechanical Regulation of Three-Dimensional Epithelial Fold Pattern Formation in the Mouse Oviduct.

作者信息

Koyama Hiroshi, Shi Dongbo, Suzuki Makoto, Ueno Naoto, Uemura Tadashi, Fujimori Toshihiko

机构信息

Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan.

Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan.

出版信息

Biophys J. 2016 Aug 9;111(3):650-665. doi: 10.1016/j.bpj.2016.06.032.

Abstract

Epithelia exhibit various three-dimensional morphologies linked to organ function in animals. However, the mechanisms of three-dimensional morphogenesis remain elusive. The luminal epithelium of the mouse oviduct forms well-aligned straight folds along the longitudinal direction of the tubes. Disruption of the Celsr1 gene, a planar cell polarity-related gene, causes ectopically branched folds. Here, we evaluated the mechanical contributions of the epithelium to the fold pattern formation. In the mutant oviduct, the epithelium was more intricate along the longitudinal direction than in the wild-type, suggesting a higher ratio of the longitudinal length of the epithelial layer to that of the surrounding smooth muscle (SM) layer (L-Epi/SM ratio). Our mathematical modeling and computational simulations suggested that the L-Epi/SM ratio could explain the differences in fold branching between the two genotypes. Longitudinal epithelial tensions were increased in well-aligned folds compared with those in disorganized folds both in the simulations and in experimental estimations. Artificially increasing the epithelial tensions suppressed the branching in simulations, suggesting that the epithelial tensions can regulate fold patterning. The epithelial tensions could be explained by the combination of line tensions along the epithelial cell-cell boundaries with the polarized cell arrays observed in vivo. These results suggest that the fold pattern is associated with the polarized cell array through the longitudinal epithelial tension. Further simulations indicated that the L-Epi/SM ratio could contribute to fold pattern diversity, suggesting that the L-Epi/SM ratio is a critical parameter in the fold patterning in tubular organs.

摘要

上皮组织呈现出与动物器官功能相关的各种三维形态。然而,三维形态发生的机制仍然不清楚。小鼠输卵管的管腔上皮沿管的纵向形成排列良好的直褶。Celsr1基因(一种与平面细胞极性相关的基因)的破坏会导致异位分支褶皱。在这里,我们评估了上皮组织对褶皱模式形成的力学贡献。在突变的输卵管中,上皮组织沿纵向比野生型更复杂,这表明上皮层的纵向长度与周围平滑肌(SM)层的纵向长度之比(L-Epi/SM比)更高。我们的数学建模和计算模拟表明,L-Epi/SM比可以解释两种基因型之间褶皱分支的差异。在模拟和实验估计中,排列良好的褶皱中的纵向上皮张力都比杂乱褶皱中的高。在模拟中人为增加上皮张力会抑制分支,这表明上皮张力可以调节褶皱模式。上皮张力可以通过沿上皮细胞-细胞边界的线张力与体内观察到的极化细胞阵列的组合来解释。这些结果表明,褶皱模式通过纵向上皮张力与极化细胞阵列相关联。进一步的模拟表明,L-Epi/SM比可能有助于褶皱模式的多样性,这表明L-Epi/SM比是管状器官褶皱模式形成中的一个关键参数。

相似文献

1
Mechanical Regulation of Three-Dimensional Epithelial Fold Pattern Formation in the Mouse Oviduct.
Biophys J. 2016 Aug 9;111(3):650-665. doi: 10.1016/j.bpj.2016.06.032.
2
Biomechanics of epithelial fold pattern formation in the mouse female reproductive tract.
Curr Opin Genet Dev. 2018 Aug;51:59-66. doi: 10.1016/j.gde.2018.06.010. Epub 2018 Jul 10.
3
Biophysics in oviduct: Planar cell polarity, cilia, epithelial fold and tube morphogenesis, egg dynamics.
Biophys Physicobiol. 2019 Feb 26;16:89-107. doi: 10.2142/biophysico.16.0_89. eCollection 2019.
4
Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct.
Development. 2014 Dec;141(23):4558-68. doi: 10.1242/dev.115659. Epub 2014 Nov 18.
5
Mouse oviduct development.
Results Probl Cell Differ. 2012;55:247-62. doi: 10.1007/978-3-642-30406-4_14.
6
Quantitative Morphology of Epithelial Folds.
Biophys J. 2016 Jan 5;110(1):269-77. doi: 10.1016/j.bpj.2015.11.024.
7
Pattern formation of an epithelial tubule by mechanical instability during epididymal development.
Cell Rep. 2014 Nov 6;9(3):866-73. doi: 10.1016/j.celrep.2014.09.041. Epub 2014 Oct 23.
9
On Buckling Morphogenesis.
J Biomech Eng. 2016 Feb;138(2):021005. doi: 10.1115/1.4032128.
10
Scanning electron microscopic study of the functional anatomy of the porcine oviductal mucosa.
Anat Histol Embryol. 2006 Feb;35(1):28-34. doi: 10.1111/j.1439-0264.2005.00634.x.

引用本文的文献

1
Tissue-scale in vitro epithelial wrinkling and wrinkle-to-fold transition.
Nat Commun. 2024 Aug 19;15(1):7118. doi: 10.1038/s41467-024-51437-z.
2
Effective mechanical potential of cell-cell interaction in tissues harboring cavity and in cell sheet toward morphogenesis.
Front Cell Dev Biol. 2024 Jul 22;12:1414601. doi: 10.3389/fcell.2024.1414601. eCollection 2024.
3
Patterning and folding of intestinal villi by active mesenchymal dewetting.
Cell. 2024 Jun 6;187(12):3072-3089.e20. doi: 10.1016/j.cell.2024.04.039. Epub 2024 May 22.
4
Patterning and folding of intestinal villi by active mesenchymal dewetting.
bioRxiv. 2023 Aug 15:2023.06.25.546328. doi: 10.1101/2023.06.25.546328.
5
Transcriptome identification of genes associated with uterus-vagina junction epithelial folds formation in chicken hens.
Poult Sci. 2023 Jun;102(6):102624. doi: 10.1016/j.psj.2023.102624. Epub 2023 Mar 6.
6
Differential Cellular Stiffness Contributes to Tissue Elongation on an Expanding Surface.
Front Cell Dev Biol. 2022 Mar 29;10:864135. doi: 10.3389/fcell.2022.864135. eCollection 2022.
8
9
Biophysical research in Okazaki, Japan.
Biophys Rev. 2020 Apr;12(2):237-243. doi: 10.1007/s12551-020-00633-4. Epub 2020 Feb 15.
10
Epithelial tissue folding pattern in confined geometry.
Biomech Model Mechanobiol. 2020 Jun;19(3):815-822. doi: 10.1007/s10237-019-01249-8. Epub 2019 Nov 14.

本文引用的文献

1
Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct.
Development. 2014 Dec;141(23):4558-68. doi: 10.1242/dev.115659. Epub 2014 Nov 18.
2
Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis.
Biomech Model Mechanobiol. 2015 Apr;14(2):413-25. doi: 10.1007/s10237-014-0613-5. Epub 2014 Sep 17.
3
Buckling of a growing tissue and the emergence of two-dimensional patterns.
Math Biosci. 2013 Dec;246(2):229-41. doi: 10.1016/j.mbs.2013.09.008. Epub 2013 Oct 12.
4
Villification: how the gut gets its villi.
Science. 2013 Oct 11;342(6155):212-8. doi: 10.1126/science.1238842. Epub 2013 Aug 29.
5
Anisotropic growth shapes intestinal tissues during embryogenesis.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10525-30. doi: 10.1073/pnas.1217391110. Epub 2013 Jun 10.
6
Forces in tissue morphogenesis and patterning.
Cell. 2013 May 23;153(5):948-62. doi: 10.1016/j.cell.2013.05.008.
7
Three-dimensional epithelial morphogenesis in the developing Drosophila egg.
Dev Cell. 2013 Feb 25;24(4):400-10. doi: 10.1016/j.devcel.2013.01.017.
8
Surface sulci in squeezed soft solids.
Phys Rev Lett. 2013 Jan 11;110(2):024302. doi: 10.1103/PhysRevLett.110.024302. Epub 2013 Jan 8.
9
Mechanical instabilities of biological tubes.
Phys Rev Lett. 2012 Jul 6;109(1):018101. doi: 10.1103/PhysRevLett.109.018101. Epub 2012 Jul 3.
10
Bayesian inference of force dynamics during morphogenesis.
J Theor Biol. 2012 Nov 21;313:201-11. doi: 10.1016/j.jtbi.2012.08.017. Epub 2012 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验