Suppr超能文献

急性缺血性卒中后皮质病变对丘脑 - 皮质网络动力学的影响:一项实验与理论相结合的研究

The Impact of Cortical Lesions on Thalamo-Cortical Network Dynamics after Acute Ischaemic Stroke: A Combined Experimental and Theoretical Study.

作者信息

van Wijngaarden Joeri B G, Zucca Riccardo, Finnigan Simon, Verschure Paul F M J

机构信息

Laboratory of Synthetic Perceptive, Emotive and Cognitive Systems (SPECS), Center for Autonomous Systems and Neuro-Robotics (N-RAS), Universitat Pompeu Fabra, Barcelona, Spain.

UQ Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.

出版信息

PLoS Comput Biol. 2016 Aug 10;12(8):e1005048. doi: 10.1371/journal.pcbi.1005048. eCollection 2016 Aug.

Abstract

The neocortex and thalamus provide a core substrate for perception, cognition, and action, and are interconnected through different direct and indirect pathways that maintain specific dynamics associated with functional states including wakefulness and sleep. It has been shown that a lack of excitation, or enhanced subcortical inhibition, can disrupt this system and drive thalamic nuclei into an attractor state of low-frequency bursting and further entrainment of thalamo-cortical circuits, also called thalamo-cortical dysrhythmia (TCD). The question remains however whether similar TCD-like phenomena can arise with a cortical origin. For instance, in stroke, a cortical lesion could disrupt thalamo-cortical interactions through an attenuation of the excitatory drive onto the thalamus, creating an imbalance between excitation and inhibition that can lead to a state of TCD. Here we tested this hypothesis by comparing the resting-state EEG recordings of acute ischaemic stroke patients (N = 21) with those of healthy, age-matched control-subjects (N = 17). We observed that these patients displayed the hallmarks of TCD: a characteristic downward shift of dominant α-peaks in the EEG power spectra, together with increased power over the lower frequencies (δ and θ-range). Contrary to general observations in TCD, the patients also displayed a broad reduction in β-band activity. In order to explain the genesis of this stroke-induced TCD, we developed a biologically constrained model of a general thalamo-cortical module, allowing us to identify the specific cellular and network mechanisms involved. Our model showed that a lesion in the cortical component leads to sustained cell membrane hyperpolarization in the corresponding thalamic relay neurons, that in turn leads to the de-inactivation of voltage-gated T-type Ca2+-channels, switching neurons from tonic spiking to a pathological bursting regime. This thalamic bursting synchronises activity on a population level through divergent intrathalamic circuits, and entrains thalamo-cortical pathways by means of propagating low-frequency oscillations beyond the restricted region of the lesion. Hence, pathological stroke-induced thalamo-cortical dynamics can be the source of diaschisis, and account for the dissociation between lesion location and non-specific symptoms of stroke such as neuropathic pain and hemispatial neglect.

摘要

新皮层和丘脑为感知、认知及行动提供了核心基础,且通过不同的直接和间接通路相互连接,这些通路维持着与包括清醒和睡眠在内的功能状态相关的特定动态。研究表明,缺乏兴奋或增强的皮层下抑制会破坏该系统,并促使丘脑核进入低频爆发的吸引子状态,进而使丘脑 - 皮层回路进一步同步,这也被称为丘脑 - 皮层节律紊乱(TCD)。然而,问题仍然存在,即类似TCD的现象是否会起源于皮层。例如,在中风时,皮层损伤可能通过减弱对丘脑的兴奋性驱动来破坏丘脑 - 皮层相互作用,从而在兴奋和抑制之间造成失衡,进而导致TCD状态。在此,我们通过比较急性缺血性中风患者(N = 21)与年龄匹配的健康对照受试者(N = 17)的静息态脑电图记录来检验这一假设。我们观察到这些患者表现出TCD的特征:脑电图功率谱中主导α峰的特征性向下偏移,以及低频(δ和θ范围)功率增加。与TCD的一般观察结果相反,这些患者还表现出β波段活动广泛降低。为了解释这种中风诱导的TCD的发生机制,我们开发了一个具有生物学约束的一般丘脑 - 皮层模块模型,这使我们能够识别其中涉及的特定细胞和网络机制。我们的模型表明,皮层成分的损伤会导致相应丘脑中继神经元的细胞膜持续超极化,进而导致电压门控T型Ca2 +通道去失活,使神经元从紧张性放电转变为病理性爆发模式。这种丘脑爆发通过发散的丘脑内回路在群体水平上同步活动,并通过在损伤受限区域之外传播低频振荡来带动丘脑 - 皮层通路。因此,病理性中风诱导的丘脑 - 皮层动态可能是远隔性机能障碍的根源,并解释了病变位置与中风的非特异性症状(如神经性疼痛和半侧空间忽视)之间的分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faf4/4979968/5865598f0ea2/pcbi.1005048.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验