Maniruzzaman Mohammed, Lam Matthew, Molina Carlos, Nokhodchi Ali
Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Arundel Building, Falmer, Brighton, BN1 9QG, UK.
Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
AAPS PharmSciTech. 2017 Jul;18(5):1428-1437. doi: 10.1208/s12249-016-0596-x. Epub 2016 Aug 10.
This study elucidates the physical properties of sono-crystallised micro/nano-sized acetaminophen/paracetamol (PMOL) and monitors its possible transformation from polymorphic form I (monoclinic) to form II (orthorhombic). Hydrophilic Plasdone® S630 copovidone (S630), N-vinyl-2-pyrrolidone and vinyl acetate copolymer, and methacrylate-based cationic copolymer, Eudragit® EPO (EPO), were used as polymeric carriers to prepare drug/polymer binary mixtures. Commercially available PMOL was crystallised under ultra sound sonication to produce micro/nano-sized (0.2-10 microns) crystals in monoclinic form. Homogeneous binary blends of drug-polymer mixtures at various drug concentrations were obtained via a thorough mixing. The analysis conducted via the single X-ray crystallography determined the detailed structure of the crystallised PMOL in its monoclinic form. The solid state and the morphology analyses of the PMOL in the binary blends evaluated via differential scanning calorimetry (DSC), modulated temperature DSC (MTDSC), scanning electron microscopy (SEM) and hot stage microscopy (HSM) revealed the crystalline existence of the drug within the amorphous polymeric matrices. The application of temperature controlled X-ray diffraction (VTXRPD) to study the polymorphism of PMOL showed that the most stable form I (monoclinic) was altered to its less stable form II (orthorhombic) at high temperature (>112°C) in the binary blends regardless of the drug amount. Thus, VTXRD was used as a useful tool to monitor polymorphic transformations of crystalline drug (e.g. PMOL) to assess their thermal stability in terms of pharmaceutical product development and research.
本研究阐明了超声结晶的微/纳米尺寸对乙酰氨基酚/扑热息痛(PMOL)的物理性质,并监测其从多晶型I(单斜晶)到晶型II(正交晶)的可能转变。亲水性聚维酮®S630共聚维酮(S630)、N-乙烯基-2-吡咯烷酮和醋酸乙烯酯共聚物,以及基于甲基丙烯酸酯的阳离子共聚物,尤特奇®EPO(EPO),被用作聚合物载体来制备药物/聚合物二元混合物。市售的PMOL在超声处理下结晶,以产生单斜晶形式的微/纳米尺寸(0.2-10微米)晶体。通过充分混合获得了不同药物浓度下药物-聚合物混合物的均匀二元共混物。通过单晶X射线晶体学进行的分析确定了结晶的单斜晶形式的PMOL的详细结构。通过差示扫描量热法(DSC)、调制温度DSC(MTDSC)、扫描电子显微镜(SEM)和热台显微镜(HSM)对二元共混物中PMOL的固态和形态分析表明,药物以晶体形式存在于无定形聚合物基质中。应用温度控制X射线衍射(VTXRPD)研究PMOL的多晶型表明,在二元共混物中,无论药物含量如何,最稳定的晶型I(单斜晶)在高温(>112°C)下都会转变为较不稳定的晶型II(正交晶)。因此,VTXRD被用作监测结晶药物(如PMOL)多晶型转变的有用工具,以评估其在药物产品开发和研究方面的热稳定性。