EPSRC Future Manufacturing Research Hub, CMAC , University of Strathclyde, Technology and Innovation Centre , 99 George Street , Glasgow G1 1RD , U.K.
Cancer Research UK Formulation Unit, SIPBS , University of Strathclyde , 161 Cathedral Street , Glasgow G4 0RE , U.K.
Mol Pharm. 2019 Oct 7;16(10):4361-4371. doi: 10.1021/acs.molpharmaceut.9b00703. Epub 2019 Sep 9.
Polymer-based amorphous solid dispersions (ASDs) comprise one of the most promising formulation strategies devised to improve the oral bioavailability of poorly water-soluble drugs. Exploitation of such systems in marketed products has been limited because of poor understanding of physical stability. The internal disordered structure and increased free energy provide a thermodynamic driving force for phase separation and recrystallization, which can compromise therapeutic efficacy and limit product shelf life. A primary concern in the development of stable ASDs is the solubility of the drug in the polymeric carrier, but there is a scarcity of reliable analytical techniques for its determination. In this work, terahertz (THz) Raman spectroscopy was introduced as a novel empirical approach to determine the saturated solubility of crystalline active pharmaceutical ingredient (API) in polymeric matrices directly during hot melt extrusion. The solubility of a model compound, paracetamol, in two polymer systems, Affinisol 15LV (HPMC) and Plasdone S630 (copovidone), was determined by monitoring the API structural phase transitions from crystalline to amorphous as an excess of crystalline drug dissolved in the polymeric matrix. THz-Raman results enabled construction of solubility phase diagrams and highlighted significant differences in the solubilization capacity of the two polymer systems. The maximum stable API-load was 20 wt % for Affinisol 15LV and 40 wt % for Plasdone S630. Differential scanning calorimetry and XRPD studies corroborated these results. This approach has demonstrated a novel capability to provide real-time API-polymer phase equilibria data in a manufacturing relevant environment and promising potential to predict solid-state solubility and physical stability of ASDs.
聚合物无定形固体分散体(ASD)是提高难溶性药物口服生物利用度的最有前途的制剂策略之一。由于对物理稳定性缺乏了解,此类系统在市售产品中的应用受到限制。无序的内部结构和增加的自由能为相分离和重结晶提供了热力学驱动力,这可能会影响治疗效果并限制产品的保质期。开发稳定 ASD 的主要关注点是药物在聚合物载体中的溶解度,但缺乏可靠的分析技术来确定其溶解度。在这项工作中,太赫兹(THz)拉曼光谱被引入作为一种新颖的经验方法,可在热熔挤出过程中直接确定结晶活性药物成分(API)在聚合物基质中的饱和溶解度。通过监测 API 从结晶到无定形的结构相变,确定了模型化合物对乙酰氨基酚在两种聚合物系统中的溶解度,即 Affinisol 15LV(HPMC)和 Plasdone S630(共聚维酮),过量的结晶药物溶解在聚合物基质中。THz-Raman 结果可用于构建溶解度相图,并突出了两种聚合物系统在增溶能力方面的显著差异。Affinisol 15LV 的最大稳定 API 负载为 20wt%,Plasdone S630 的最大稳定 API 负载为 40wt%。差示扫描量热法和 X 射线粉末衍射研究证实了这些结果。该方法展示了在制造相关环境中提供实时 API-聚合物相平衡数据的新能力,并有望预测 ASD 的固态溶解度和物理稳定性。